33,402 research outputs found

    Generalized Bayesian Multidimensional Scaling and Model Comparison

    Full text link
    Multidimensional scaling is widely used to reconstruct a map with the points' coordinates in a low-dimensional space from the original high-dimensional space while preserving the pairwise distances. In a Bayesian framework, the current approach using Markov chain Monte Carlo algorithms has limitations in terms of model generalization and performance comparison. To address these limitations, a general framework that incorporates non-Gaussian errors and robustness to fit different types of dissimilarities is developed. Then, an adaptive inference method using annealed Sequential Monte Carlo algorithm for Bayesian multidimensional scaling is proposed. This algorithm performs inference sequentially in time and provides an approximate posterior distribution over the points' coordinates in a low-dimensional space and an unbiased estimator for the marginal likelihood. In this study, we compare the performance of different models based on marginal likelihoods, which are produced as a byproduct of the adaptive annealed Sequential Monte Carlo algorithm. Using synthetic and real data, we demonstrate the effectiveness of the proposed algorithm. Our results show that the proposed algorithm outperforms other benchmark algorithms under the same computational budget based on common metrics used in the literature. The implementation of our proposed method and applications are available at https://github.com/nunujiarui/GBMDS

    Efficient Sequential Monte-Carlo Samplers for Bayesian Inference

    Full text link
    In many problems, complex non-Gaussian and/or nonlinear models are required to accurately describe a physical system of interest. In such cases, Monte Carlo algorithms are remarkably flexible and extremely powerful approaches to solve such inference problems. However, in the presence of a high-dimensional and/or multimodal posterior distribution, it is widely documented that standard Monte-Carlo techniques could lead to poor performance. In this paper, the study is focused on a Sequential Monte-Carlo (SMC) sampler framework, a more robust and efficient Monte Carlo algorithm. Although this approach presents many advantages over traditional Monte-Carlo methods, the potential of this emergent technique is however largely underexploited in signal processing. In this work, we aim at proposing some novel strategies that will improve the efficiency and facilitate practical implementation of the SMC sampler specifically for signal processing applications. Firstly, we propose an automatic and adaptive strategy that selects the sequence of distributions within the SMC sampler that minimizes the asymptotic variance of the estimator of the posterior normalization constant. This is critical for performing model selection in modelling applications in Bayesian signal processing. The second original contribution we present improves the global efficiency of the SMC sampler by introducing a novel correction mechanism that allows the use of the particles generated through all the iterations of the algorithm (instead of only particles from the last iteration). This is a significant contribution as it removes the need to discard a large portion of the samples obtained, as is standard in standard SMC methods. This will improve estimation performance in practical settings where computational budget is important to consider.Comment: arXiv admin note: text overlap with arXiv:1303.3123 by other author

    Stochastic methods for solving high-dimensional partial differential equations

    Full text link
    We propose algorithms for solving high-dimensional Partial Differential Equations (PDEs) that combine a probabilistic interpretation of PDEs, through Feynman-Kac representation, with sparse interpolation. Monte-Carlo methods and time-integration schemes are used to estimate pointwise evaluations of the solution of a PDE. We use a sequential control variates algorithm, where control variates are constructed based on successive approximations of the solution of the PDE. Two different algorithms are proposed, combining in different ways the sequential control variates algorithm and adaptive sparse interpolation. Numerical examples will illustrate the behavior of these algorithms

    Generating sequential space-filling designs using genetic algorithms and Monte Carlo methods

    Get PDF
    In this paper, the authors compare a Monte Carlo method and an optimization-based approach using genetic algorithms for sequentially generating space-filling experimental designs. It is shown that Monte Carlo methods perform better than genetic algorithms for this specific problem

    Group Importance Sampling for Particle Filtering and MCMC

    Full text link
    Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have become very popular in signal processing over the last years. Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a posterior distribution by means of weighted samples. In this work, we study the assignation of a single weighted sample which compresses the information contained in a population of weighted samples. Part of the theory that we present as Group Importance Sampling (GIS) has been employed implicitly in different works in the literature. The provided analysis yields several theoretical and practical consequences. For instance, we discuss the application of GIS into the Sequential Importance Resampling framework and show that Independent Multiple Try Metropolis schemes can be interpreted as a standard Metropolis-Hastings algorithm, following the GIS approach. We also introduce two novel Markov Chain Monte Carlo (MCMC) techniques based on GIS. The first one, named Group Metropolis Sampling method, produces a Markov chain of sets of weighted samples. All these sets are then employed for obtaining a unique global estimator. The second one is the Distributed Particle Metropolis-Hastings technique, where different parallel particle filters are jointly used to drive an MCMC algorithm. Different resampled trajectories are compared and then tested with a proper acceptance probability. The novel schemes are tested in different numerical experiments such as learning the hyperparameters of Gaussian Processes, two localization problems in a wireless sensor network (with synthetic and real data) and the tracking of vegetation parameters given satellite observations, where they are compared with several benchmark Monte Carlo techniques. Three illustrative Matlab demos are also provided.Comment: To appear in Digital Signal Processing. Related Matlab demos are provided at https://github.com/lukafree/GIS.gi

    An Adaptive Interacting Wang-Landau Algorithm for Automatic Density Exploration

    Full text link
    While statisticians are well-accustomed to performing exploratory analysis in the modeling stage of an analysis, the notion of conducting preliminary general-purpose exploratory analysis in the Monte Carlo stage (or more generally, the model-fitting stage) of an analysis is an area which we feel deserves much further attention. Towards this aim, this paper proposes a general-purpose algorithm for automatic density exploration. The proposed exploration algorithm combines and expands upon components from various adaptive Markov chain Monte Carlo methods, with the Wang-Landau algorithm at its heart. Additionally, the algorithm is run on interacting parallel chains -- a feature which both decreases computational cost as well as stabilizes the algorithm, improving its ability to explore the density. Performance is studied in several applications. Through a Bayesian variable selection example, the authors demonstrate the convergence gains obtained with interacting chains. The ability of the algorithm's adaptive proposal to induce mode-jumping is illustrated through a trimodal density and a Bayesian mixture modeling application. Lastly, through a 2D Ising model, the authors demonstrate the ability of the algorithm to overcome the high correlations encountered in spatial models.Comment: 33 pages, 20 figures (the supplementary materials are included as appendices
    corecore