365 research outputs found

    Extraction of Blood Vessels Geometric Shape Features with Catheter Localization and Geodesic Distance Transform for Right Coronary Artery Detection.

    Get PDF
    X-ray angiography is considered the standard imaging sensory system for diagnosing coronary artery diseases. For automated, accurate diagnosis of such diseases, coronary vessels’ detection from the captured low quality and noisy angiography images is challenging. It is essential to detect the main branch of the coronary artery, to resolve such limitations along with the problems due to the sudden changes in the lumen diameter, and the abrupt changes in local artery direction. Accordingly, this paper solved these limitations by proposing a computer-aided detection system for the right coronary artery (RCA) extraction, where geometric shape features with catheter localization and geodesic distance transform in the angiography images through two parts. In part 1, the captured image was initially preprocessed for contrast enhancement using singular value decomposition-based contrast adjustment, followed by generating the vesselness map using Jerman filter, and for further segmentation the K-means was introduced. Afterward, in part 2, the geometric shape features of the RCA, as well as the skeleton gradient transform, and the start/end points were determined to extract the main blood vessel of the RCA. The analysis of the skeletonize image was performed using Geodesic distance transform to examine all branches starting from the predetermined start point and cover the branching till the predefined end points. A ranking matrix, and the inverse of skeletonization were finally carried out to get the actual main branch. The performance of the proposed system was then evaluated using different evaluation metrics on the angiography images...

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated

    Optimized Adaptive Frangi-based Coronary Artery Segmentation using Genetic Algorithm

    Get PDF
    Diseases of coronary artery are deliberated as one of the most common heart diseases leading to death worldwide. For early detection of such disease, the X-ray angiography is a benchmark imaging modality for diagnosing such illness. The acquired X-ray angiography images usually suffer from low quality and the presence of noise. Therefore, for developing a computer-aided diagnosis (CAD) system, vessel enhancement and segmentation play significant role. In this paper, an optimized adapter filter based on Frangi filter was proposed for superior segmentation of the angiography images using genetic algorithm (GA). The original angiography image is initially preprocessed to enhance its contrast followed by generating the vesselness map using the proposed optimized Frangi filter. Then, a segmentation technique is applied to extract only the artery vessels, where the proposed system for extracting only the main vessel was evaluated. The experimental results on angiography images established the superiority of the vessel regions extraction showing 98.58% accuracy compared to the state-of-the-art

    Automatic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Segmentation of the coronary angiogram is important in computer-assisted artery motion analysis or reconstruction of 3D vascular structures from a single-plan or biplane angiographic system. Developing fully automated and accurate vessel segmentation algorithms is highly challenging, especially when extracting vascular structures with large variations in image intensities and noise, as well as with variable cross-sections or vascular lesions.</p> <p>Methods</p> <p>This paper presents a novel tracking method for automatic segmentation of the coronary artery tree in X-ray angiographic images, based on probabilistic vessel tracking and fuzzy structure pattern inferring. The method is composed of two main steps: preprocessing and tracking. In preprocessing, multiscale Gabor filtering and Hessian matrix analysis were used to enhance and extract vessel features from the original angiographic image, leading to a vessel feature map as well as a vessel direction map. In tracking, a seed point was first automatically detected by analyzing the vessel feature map. Subsequently, two operators [e.g., a probabilistic tracking operator (PTO) and a vessel structure pattern detector (SPD)] worked together based on the detected seed point to extract vessel segments or branches one at a time. The local structure pattern was inferred by a multi-feature based fuzzy inferring function employed in the SPD. The identified structure pattern, such as crossing or bifurcation, was used to control the tracking process, for example, to keep tracking the current segment or start tracking a new one, depending on the detected pattern.</p> <p>Results</p> <p>By appropriate integration of these advanced preprocessing and tracking steps, our tracking algorithm is able to extract both vessel axis lines and edge points, as well as measure the arterial diameters in various complicated cases. For example, it can walk across gaps along the longitudinal vessel direction, manage varying vessel curvatures, and adapt to varying vessel widths in situations with arterial stenoses and aneurysms.</p> <p>Conclusions</p> <p>Our algorithm performs well in terms of robustness, automation, adaptability, and applicability. In particular, the successful development of two novel operators, namely, PTO and SPD, ensures the performance of our algorithm in vessel tracking.</p

    Dynamic Analysis of X-ray Angiography for Image-Guided Coronary Interventions

    Get PDF
    Percutaneous coronary intervention (PCI) is a minimally-invasive procedure for treating patients with coronary artery disease. PCI is typically performed with image guidance using X-ray angiograms (XA) in which coronary arter

    Automatic multiscale vascular image segmentation algorithm for coronary angiography

    Get PDF
    [Abstract] Cardiovascular diseases, particularly severe stenosis, are the main cause of death in the western world. The primary method of diagnosis, considered to be the standard in the detection and quantification of stenotic lesions, is a coronary angiography. This article proposes a new automatic multiscale segmentation algorithm for the study of coronary trees that offers results comparable to the best existing semi-automatic method. According to the state-of-the-art, a representative number of coronary angiography images that ensures the generalisation capacity of the algorithm has been used. All these images were selected by clinics from an Haemodynamics Unit. An exhaustive statistical analysis was performed in terms of sensitivity, specificity and Jaccard. Algorithm improvements imply that the clinician can perform tests on the patient and, bypassing the images through the system, can verify, in that moment, the intervention of existing differences in a coronary tree from a previous test, in such a way that it could change its clinical intra-intervention criteria.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2014/049Ministerio de Economía y Competitividad; TIN2015-70648-

    Extraction of Airways with Probabilistic State-space Models and Bayesian Smoothing

    Full text link
    Segmenting tree structures is common in several image processing applications. In medical image analysis, reliable segmentations of airways, vessels, neurons and other tree structures can enable important clinical applications. We present a framework for tracking tree structures comprising of elongated branches using probabilistic state-space models and Bayesian smoothing. Unlike most existing methods that proceed with sequential tracking of branches, we present an exploratory method, that is less sensitive to local anomalies in the data due to acquisition noise and/or interfering structures. The evolution of individual branches is modelled using a process model and the observed data is incorporated into the update step of the Bayesian smoother using a measurement model that is based on a multi-scale blob detector. Bayesian smoothing is performed using the RTS (Rauch-Tung-Striebel) smoother, which provides Gaussian density estimates of branch states at each tracking step. We select likely branch seed points automatically based on the response of the blob detection and track from all such seed points using the RTS smoother. We use covariance of the marginal posterior density estimated for each branch to discriminate false positive and true positive branches. The method is evaluated on 3D chest CT scans to track airways. We show that the presented method results in additional branches compared to a baseline method based on region growing on probability images.Comment: 10 pages. Pre-print of the paper accepted at Workshop on Graphs in Biomedical Image Analysis. MICCAI 2017. Quebec Cit

    Unified adaptive framework for contrast enhancement of blood vessels

    Get PDF
    Information about blood vessel structures influences a lot of diseases in the medical realm. Therefore, for proper localization of blood vessels, its contrast should be enhanced properly. Since the blood vessels from all the medical angio-images have almost similar properties, a unified approach for the contrast enhancement of blood vessel structures is very useful. This paper aims to enhance the contrast of the blood vessels as well as the overall contrast of all the medical angio-images. In the proposed method, initially, the vessel probability map is extracted using hessian eigenanalysis. From the map, vessel edges and textures are derived and summed at every pixel location to frame a unique fractional differential function. The resulting fractional value from the function gives out the most optimal fractional order that can be adjusted to improve the contrast of blood vessels by convolving the image using Grunwald-Letnikov (G-L) fractional differential kernel. The vessel enhanced image is Gaussian fitted and contrast stretched to get overall contrast enhancement. This method of enhancement, when applied to medical angio-images such as the retinal fundus, Computerised Tomography (CT), Coronary Angiography (CA) and Digital Subtraction Angiography (DSA), has shown improved performance validated by the performance metrics

    A new approach to automated retinal vessel segmentation using multiscale analysis

    Get PDF
    Author name used in this publication: David ZhangRefereed conference paper2006-2007 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe
    corecore