12 research outputs found

    Adaptive Security in ODMAC for Multihop Energy Harvesting Wireless Sensor Networks

    Get PDF
    Energy Harvesting Wireless Sensor Networks (EH-WSNs) represent an interesting new paradigm where individual nodes forming a network are powered by energy sources scavenged from the surrounding environment. This technique provides numerous advantages, but also new design challenges. Securing the communications under energy constraints represents one of these key challenges. The amount of energy available is theoretically infinite in the long run but highly variable over short periods of time, and managing it is a crucial aspect. In this paper we present an adaptive approach for security in multihop EH-WSNs which allows different nodes to dynamically choose the most appropriate energy-affecting parameters such as encryption algorithm and key size, providing in this way energy savings. In order to provide evidence of the approach's feasibility in a real-world network, we have designed and implemented it as extension of on-demand medium access control (ODMAC), a receiver-initiated (RI) MAC protocol specifically designed and developed to address the foundational energy-related needs of Energy Harvesting Wireless Sensor Networks

    Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    Get PDF

    On the Impact of Energy Harvesting on Wireless Sensor Network Security

    Get PDF

    Radio Access Techniques for Energy Effcient and Energy Harvesting based Wireless Sensor Networks

    Get PDF
    Traditional Wireless Sensor Networks (WSN) rely on batteries with finite stored energy. In the future with billions of such devices, it will be difficult to replace and dispose their batteries, which can cause a huge environmental threat. Hence, research is being done to eliminate batteries from sensor devices and replace them with harvesters. These harvesters can power the sensor network nodes by extracting energy from ambient sources. Harvesters are already being implemented in many real-life applications like structural health monitoring, environment monitoring and body area networks. A sensor network of multiple energy harvesting enabled devices is known as Energy Harvesting based Wireless Sensor Network (EH-WSN). For uninterrupted operation of EH-WSN, radio protocols must consider the energy harvesting constraints; (i) energy harvesting process unpredictability and; (ii) energy harvesting rate variations in time and space. EH-WSN comes with unique traits which discourage the use of existing WSNs radio protocols, as most of existing protocols are focussed on decreasing the energy consumption and increasing the network lifetime. This thesis work focusses on modifying an existing energyefficient Multipath Rings (MPR) routing protocol for low-power and low-bandwidth EH-WSN and evaluating its performance through simulations. Firstly, the topology setup phase is revised by implementing a new ring formation scheme for better data reliability. Secondly, controlled flooding of data packets is used by enabling selective forwarding, which leads to decrease in network traffic and overall energy consumption. Lastly, every node is equipped with a neighbors’ table on-board which helps in making energy-related routing decisions in multi-hop networks. A periodic energy update packet transmission helps in keeping latest neighbor information. This modified version of MPR routing protocol is called Energy Harvesting based Multipath Rings (EH-MPR) routing. This work also provides a comprehensive survey on existing MAC and Routing protocols for energy efficient and energy harvesting based WSNs. Through this work, the main constraints on using existing energy-efficient protocols for EH-WSN are discussed and depicted with the help of network simulations. The effects of using fixed duty cycle for energy harvesting enabled sensor nodes are outlined by simulating T-MAC (adaptive duty cycle) against S-MAC (fixed duty cycle). For all evaluation metrics, T-MAC outperformed S-MAC. Using Castalia’s realistic wireless channel and radio model, EH-MPR is simulated for low-power, low-data rate and low bandwidth (1 MHz) networks where satisfactory results are obtained for sub-GHz frequencies (433 MHz and 868 MHz). Next, the modified EH-MPR protocol is compared with original MPR routing under practical deployment scenarios. The metrics in consideration are successful packet transmissions, energy consumption, energy harvested-to-consumed ratio and failed packets. After thorough simulations, it was concluded that although the packet success rate is approximately equal for both protocols, EH-MPR has advantages over original MPR routing protocol in terms of energy cost and uninterrupted operations

    Adaptive Multipath Key Reinforcement for Energy Harvesting Wireless Sensor Networks

    Get PDF
    AbstractEnergy Harvesting - Wireless Sensor Networks (EH-WSNs) constitute systems of networked sensing nodes that are capable of extracting energy from the environment and that use the harvested energy to operate in a sustainable state. Sustainability, seen as design goal, has a significant impact on the design of the security protocols for such networks, as the nodes have to adapt and optimize their behaviour according to the available energy. Traditional key management schemes do not take energy into account, making them not suitable for EH-WSNs. In this paper we propose a new multipath key reinforcement scheme specifically designed for EH-WSNs. The proposed scheme allows each node to take into consideration and adapt to the amount of energy available in the system. In particular, we present two approaches, one static and one fully dynamic, and we discuss some experimental results

    The Effects of an Adaptive and Distributed Transmission Power Control on the Performance of Energy Harvesting Sensor Networks

    Get PDF
    The design of routing protocols for wireless sensor networks (WSNs) has been traditionally tackled by assuming battery-powered sensors, in which minimizing the power consumption was the main objective. Advances in technology and the ability to harvest energy from the environment has enabled self-sustaining systems and thus diminish the significance of network lifetime considerations in the design of WSNs. Although WSNs operated by energy-harvesting sensors are not limited by network lifetime, they still pose new design challenges due to the unstable and uncertain amount of energy that can be harvested from the environment. In this paper, we propose a new protocol for energy-harvesting sensor networks that uses adaptive transmission power to maintain the network connectivity, and distributes the traffic load on the network. Based on local information, each node dynamically adjusts its transmission power in order to maximize the network’s end-to-end performance. The simulation results indicate that the proposed protocol keeps the network connected at most of the times by using an efficient power management, outperforming greedy forwarding and dynamic duty cycle protocols in terms of packet delivery ratio, delay, and power management

    Internet of things security: A top-down survey

    Get PDF
    International audienceInternet of Things (IoT) is one of the promising technologies that has attracted a lot of attention in both industrial and academic fields these years. It aims to integrate seamlessly both physical and digital worlds in one single ecosystem that makes up a new intelligent era of Internet. This technology offers a huge business value for organizations and provides opportunities for many existing applications such as energy, healthcare and other sectors. However, as new emergent technology, IoT suffers from several security issues which are most challenging than those from other fields regarding its complex environment and resources-constrained IoT devices. A lot of researches have been initiated in order to provide efficient security solutions in IoT, particularly to address resources constraints and scalability issues. Furthermore, some technologies related to networking and cryptocurrency fields such as Software Defined Networking (SDN) and Blockchain are revolutionizing the world of the Internet of Things thanks to their efficiency and scalability. In this paper, we provide a comprehensive top down survey of the most recent proposed security and privacy solutions in IoT. We discuss particularly the benefits that new approaches such as blockchain and Software Defined Networking can bring to the security and the privacy in IoT in terms of flexibility and scalability. Finally, we give a general classification of existing solutions and comparison based on important parameters

    Energy Saving Mechanisms in the Security of the Internet of Things

    Get PDF
    Energy consumption is one of the priorities of security on the Internet of Things. It is not easy to find the best solutions that will reduce energy consumption, while ensuring that the security requirements are met. Many of the issues that have been presented so far have covered the basics of security, such as the basic principles of encryption, extension environments, target applications, and so on.This paper examines one of the most effective energy-efficiency mechanisms for providing Internet-based security services. By studying techniques that enable the development of advanced energy-efficient security solutions, we take a closer look at the ideas that have already been introduced in this area. In this study, not only the security issues, but also the energy impacts on solutions have been considered. Initially, the amount of energy related to security services is introduced. Then a classification is proposed for energy efficient mechanisms on the Internet of Things. Finally, the main drivers of the impact of energy saving techniques are analyzed for security solutions
    corecore