98 research outputs found

    Daylight simulation with photon maps

    Get PDF
    Physically based image synthesis remains one of the most demanding tasks in the computer graphics field, whose applications have evolved along with the techniques in recent years, particularly with the decline in cost of powerful computing hardware. Physically based rendering is essentially a niche since it goes beyond the photorealistic look required by mainstream applications with the goal of computing actual lighting levels in physical quantities within a complex 3D scene. Unlike mainstream applications which merely demand visually convincing images and short rendering times, physically based rendering emphasises accuracy at the cost of increased computational overhead. Among the more specialised applications for physically based rendering is lighting simulation, particularly in conjunction with daylight. The aim of this thesis is to investigate the applicability of a novel image synthesis technique based on Monte Carlo particle transport to daylight simulation. Many materials used in daylight simulation are specifically designed to redirect light, and as such give rise to complex effects such as caustics. The photon map technique was chosen for its efficent handling of these effects. To assess its ability to produce physically correct results which can be applied to lighting simulation, a validation was carried out based on analytical case studies and on simple experimental setups. As prerequisite to validation, the photon map\u27s inherent bias/noise tradeoff is investigated. This tradeoff depends on the density estimate bandwidth used in the reconstruction of the illumination. The error analysis leads to the development of a bias compensating operator which adapts the bandwidth according to the estimated bias in the reconstructed illumination. The work presented here was developed at the Fraunhofer Institute for Solar Energy Systems (ISE) as part of the FARESYS project sponsored by the German national research foundation (DFG), and embedded into the RADIANCE rendering system.Die Erzeugung physikalisch basierter Bilder gilt heute noch als eine der rechenintensivsten Aufgaben in der Computergraphik, dessen Anwendungen sowie auch Verfahren in den letzten Jahren kontinuierlich weiterentwickelt wurden, vorangetrieben primär durch den Preisverfall leistungsstarker Hardware. Physikalisch basiertes Rendering hat sich als Nische etabliert, die über die photorealistischen Anforderungen typischer Mainstream-Applikationen hinausgeht, mit dem Ziel, Lichttechnische Größen innerhalb einer komplexen 3D Szene zu berechnen. Im Gegensatz zu Mainstream-Applikationen, die visuell überzeugend wirken sollen und kurze Rechenzeiten erforden, liegt der Schwerpunkt bei physikalisch basiertem Rendering in der Genauigkeit, auf Kosten des Rechenaufwands. Zu den eher spezialisierten Anwendungen im Gebiet des physikalisch basiertem Renderings gehört die Lichtsimulation, besonders in Bezug auf Tageslicht. Das Ziel dieser Dissertation liegt darin, die Anwendbarkeit eines neuartigen Renderingverfahrens basierend auf Monte Carlo Partikeltransport hinsichtlich Tageslichtsimulation zu untersuchen. Viele Materialien, die in der Tageslichtsimulation verwendet werden, sind speziell darauf konzipiert, Tageslicht umzulenken, und somit komplexe Phänomene wie Kaustiken hervorrufen. Das Photon-Map-Verfahren wurde aufgrund seiner effizienten Simulation solcher Effekte herangezogen. Zur Beurteilung seiner Fähigkeit, physikalisch korrekte Ergebnisse zu liefern, die in der Tageslichtsimulation anwendbar sind, wurde eine Validierung anhand analytischer Studien sowie eines einfachen experimentellen Aufbaus durchgeführt. Als Voraussetzung zur Validierung wurde der Photon Map bezüglich seiner inhärenten Wechselwirkung zwischen Rauschen und systematischem Fehler (Bias) untersucht. Diese Wechselwirkung hängt von der Bandbreite des Density Estimates ab, mit dem die Beleuchtung aus den Photonen rekonstruiert wird. Die Fehleranalyse führt zur Entwicklung eines Bias compensating Operators, der die Bandbreite dynamisch anhand des geschätzten Bias in der rekonstruierten Beleuchtung anpasst. Die hier vorgestellte Arbeit wurde am Fraunhofer Institut für Solare Energiesysteme (ISE) als teil des FARESYS Projekts entwickelt, daß von der Deutschen Forschungsgemeinschaft (DFG) finanziert wurde. Die Implementierung erfolgte im Rahmen des RADIANCE Renderingsystems

    A General Two-Pass Method Integrating Specular and Diffuse Reflection

    Get PDF
    International audienceWe analyse some recent approaches to the global illumination problem by introducing the corresponding reflection operators, and we demonstrate the advantages of a two-pass method. A generalization of the system introduced by Wallace et al. at Siggraph '87 to integrate diffuse as well as specular effects is presented. It is based on the calculation of extended form-factors, which allows arbitrary geometries to be used in the scene description, as well as refraction effects. We also present a new sampling method for the calculation of form-factors, which is an Mternative to the hemi-cube technique introduced by Cohen and Greenberg for radiosity calculations. This method is particularly well suited to the extended form-factors calculation. The problem of interactive display of the picture being created is also addressed by using hardware-assisted projections and image composition to recreate a complete specular view of the scene

    Implementation and Analysis of an Image-Based Global Illumination Framework for Animated Environments

    Get PDF
    We describe a new framework for efficiently computing and storing global illumination effects for complex, animated environments. The new framework allows the rapid generation of sequences representing any arbitrary path in a view space within an environment in which both the viewer and objects move. The global illumination is stored as time sequences of range-images at base locations that span the view space. We present algorithms for determining locations for these base images, and the time steps required to adequately capture the effects of object motion. We also present algorithms for computing the global illumination in the base images that exploit spatial and temporal coherence by considering direct and indirect illumination separately. We discuss an initial implementation using the new framework. Results and analysis of our implementation demonstrate the effectiveness of the individual phases of the approach; we conclude with an application of the complete framework to a complex environment that includes object motion

    Vector occluders: an empirical approximation for rendering global illumination effects in real-time

    Get PDF
    Precomputation has been previously used as a means to get global illumination effects in real-time on consumer hardware of the day. Our work uses Sloan???s 2002 PRT method as a starting point, and builds on it with two new ideas. We first explore an alternative representation for PRT data. ???Cpherical harmonics??? (CH) are introduced as an alternative to spherical harmonics, by substituting the Chebyshev polynomial in the place of the Legendre polynomial as the orthogonal polynomial in the spherical harmonics definition. We show that CH can be used instead of SH for PRT with near-equivalent performance. ???Vector occluders??? (VO) are introduced as a novel, precomputed, real-time, empirical technique for adding global illumination effects including shadows, caustics and interreflections to a locally illuminated scene on static geometry. VO encodes PRT data as simple vectors instead of using SH. VO can handle point lights, whereas a standard SH implementation cannot

    Photorealistic physically based render engines: a comparative study

    Full text link
    Pérez Roig, F. (2012). Photorealistic physically based render engines: a comparative study. http://hdl.handle.net/10251/14797.Archivo delegad

    A Gathering and Shooting Progressive Refinement Radiosity Method

    Get PDF
    This paper presents a gathering and shooting progressive refinement radiosity method. Our method integrates the iterative process of light energy gathering used in the standard full matrix method and the iterative process of light energy shooting used in the conventional progressive refinement method. As usual, in each iteration, the algorithm first selects the patch which holds the maximum unprocessed light energy in the environment as the shooting patch. But before the shooting process is activated, a light energy gathering process takes place. In this gathering process, the amount of the unprocessed light energy which is supposed to be shot to the current shooting patch from the rest of the environment in later iterations is pre-accumulated. In general, this extra amount of gathered light energy is far from trivial since it comes from every patch in the environment from which the current shooting patch can be seen. However, with the reciprocity relationship for form-factors, still only one hemi-cube of the form-factors is needed in each iteration step. Based on a concise record of the history of the unprocessed light energy distribution in the environment, a new progressive refinement algorithm with revised gathering and shooting procedures is then proposed. With little additional computation and memory usage compared to the conventional progressive refinement radiosity method, a solid convergence speedup is achieved. This gathering and shooting approach extends the capability of the radiosity method in accurate and efficient simulation of the global illuminations of complex environments

    A Theoretical Analysis of Compactness of the Light Transport Operator

    Get PDF
    International audienceRendering photorealistic visuals of virtual scenes requires tractable models for the simulation of light. The rendering equation describes one such model using an integral equation, the crux of which is a continuous integral operator. A majority of rendering algorithms aim to approximate the effect of this light transport operator via discretization (using rays, particles, patches, etc.). Research spanning four decades has uncovered interesting properties and intuition surrounding this operator. In this paper we analyze compactness, a key property that is independent of its discretization and which characterizes the ability to approximate the operator uniformly by a sequence of finite rank operators. We conclusively prove lingering suspicions that this operator is not compact and therefore that any discretization that relies on a finite-rank or nonadaptive finite-bases is susceptible to unbounded error over arbitrary light distributions. Our result justifies the expectation for rendering algorithms to be evaluated using a variety of scenes and illumination conditions. We also discover that its lower dimensional counterpart (over purely diffuse scenes) is not compact except in special cases, and uncover connections with it being noninvertible and acting as a low-pass filter. We explain the relevance of our results in the context of previous work. We believe that our theoretical results will inform future rendering algorithms regarding practical choices.Le rendu d'images photoréalistes de scènes virtuelles nécessite la simulation du transport lumineux. L'équation du rendu décrit un tel modèle à l'aide d'une équation intégrale, ou intervient un opérateur intégral continu. Une part significative des d'algorithmes de rendu visent à approximer l'effet de cet opérateur via une discrétisation (à l'aide de rayons, de particules, de patchs, etc.). Quatre décennies de recherches ont mis à jour des propriétés et une intuition entourant cet opérateur. Dans cet article, nous analysons sa compacité, une propriété clé qui est indépendante de la discrétisation et qui caractérise la possibilité d'approcher uniformément l'opérateur par une suite d'opérateurs de rang fini. Nous justifions les soupçons persistants que cet opérateur n'est pas compact et donc que toute discrétisation qui repose sur un rang fini ou des bases finies non adaptatives n'apporte pas de guarantie d'erreur sur des distributions de lumière arbitraires. Notre résultat justifie le besoin d'évaluer chaque méthode en utilisant une variété de scènes et de conditions d'éclairage. Nous montrons également que son homologue de dimension inférieure (sur des scènes purement diffuses) n'est pas compact sauf dans des cas particuliers, et établissons un lien avec le fait qu'il est non inversible et agit comme un filtre passe-bas. Nous expliquons la pertinence de nos résultats dans le contexte de travaux antérieurs. Nous pensons que nos résultats théoriques éclaireront les futurs algorithmes de rendu concernant les choix pratiques

    Generating Radiosity Maps on the GPU

    Get PDF
    Global illumination algorithms are used to render photorealistic images of 3D scenes taking into account both direct lighting from the light source and light reflected from other surfaces in the scene. Algorithms based on computing radiosity were among the first to be used to calculate indirect lighting, although they make assumptions that work only for diffusely reflecting surfaces. The classic radiosity approach divides a scene into multiple patches and generates a linear system of equations which, when solved, gives the values for the radiosity leaving each patch. This process can require extensive calculations and is therefore very slow. An alternative to solving a large system of equations is to use a Monte Carlo method of random sampling. In this approach, a large number of rays are shot from each patch into its surroundings and the irradiance values obtained from these rays are averaged to obtain a close approximation to the real value. This thesis proposes the use of a Monte Carlo method to generate radiosity texture maps on graphics hardware. By storing the radiosity values in textures, they are immediately available for rendering, making this algorithm useful for interactive implementations. We have built a framework to run this algorithm and using current graphics cards (NV6800 or higher) it is possible to execute it almost interactively for simple scenes and within relatively low times for more complex scenes

    An exploration of improving sampling within Monte Carlo ray tracing using adaptive blue noise.

    Get PDF
    In this report we demonstrate that strategically choosing sampling points with an intelligent use of adaptive blue noise sampling methods can drastically reduce the computation time required in the rendering process. We explore the state of the art in blue noise sample generation and explore new ways it can be used within the rendering process. Monte Carlo ray tracing is a vastly adopted image syntheses technique used ubiquitously across commercial and academic applications. It is capable of creating very high fidelity physically plausible images with computation that it unrestricted by dimensionality unlike most analytical approaches. Although capable of producing a high quality images Monte Carlo ray tracing often still needs to compute millions, if not billions of samples to produce a fully converged, noise free image. Tracing these samples comes at a cost and can lead to large computation times. Although we can reduce the cost of tracing rays with more optimized acceleration structures or naively throwing more hardware at the problem these are overshadowed by the improved quality gained via improved strategic sampling. Strategic sample placement has been proved to improve convergence rate of Monte Carlo ray tracing requiring fewer samples, and therefore decrease computation required to produce comparable results in quality. We explore the current literature on sampling methodologies and compare their implementation, performance and limitations and show that their sampling quality is inferior to adaptive blue noise. We will focus on applying the use of adaptive blue noise sampling within four dimensions of the rendering pipeline specifically. Firstly, we present a technique for generating primary ray samples that adaptively samples the image plane. We use a blue noise algorithm that adapts based on pre-existing information about the scene to increase the sampling frequency within areas of interest. Secondly we look at filter importance sampling, a technique that seems to be becoming ever more popular in rendering, and how we can use adaptive blue noise to generate higher quality sampling distributions than what is possible with the currently used methods of importance sampling. Next we will explore importance sampling BxDFs by generating samples over the hemi- sphere. Finally we will conclude with a brief discussion on some future ideas about direct light sampling of arbitrarily defined mesh lights. A challenge that is faced by all professional rendering software as efficient sampling methodologies are not well defined. Although not all our results in this report are entirely conclusive we believe that we have brought attention and provided promising results that build the foundations to an under researched area of knowledge that could help solve practical rendering problems faced by professional graphics
    corecore