945 research outputs found

    A Case Study on Formal Verification of Self-Adaptive Behaviors in a Decentralized System

    Full text link
    Self-adaptation is a promising approach to manage the complexity of modern software systems. A self-adaptive system is able to adapt autonomously to internal dynamics and changing conditions in the environment to achieve particular quality goals. Our particular interest is in decentralized self-adaptive systems, in which central control of adaptation is not an option. One important challenge in self-adaptive systems, in particular those with decentralized control of adaptation, is to provide guarantees about the intended runtime qualities. In this paper, we present a case study in which we use model checking to verify behavioral properties of a decentralized self-adaptive system. Concretely, we contribute with a formalized architecture model of a decentralized traffic monitoring system and prove a number of self-adaptation properties for flexibility and robustness. To model the main processes in the system we use timed automata, and for the specification of the required properties we use timed computation tree logic. We use the Uppaal tool to specify the system and verify the flexibility and robustness properties.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    Self-adaptive Authorisation Infrastructures

    Get PDF
    Traditional approaches in access control rely on immutable criteria in which to decide and award access. These approaches are limited, notably when handling changes in an organisation’s protected resources, resulting in the inability to accommodate the dynamic aspects of risk at runtime. An example of such risk is a user abusing their privileged access to perform insider attacks. This thesis proposes self-adaptive authorisation, an approach that enables dynamic access control. A framework for developing self-adaptive authorisation is defined, where autonomic controllers are deployed within legacy based authorisation infrastructures to enable the runtime management of access control. Essential to the approach is the use of models and model driven engineering (MDE). Models enable a controller to abstract from the authorisation infrastructure it seeks to control, reason about state, and provide assurances over change to access. For example, a modelled state of access may represent an active access control policy. Given the diverse nature in implementations of authorisation infrastructures, MDE enables the creation and transformation of such models, whereby assets (e.g., policies) can be automatically generated and deployed at runtime. A prototype of the framework was developed, whereby management of access control is focused on the mitigation of abuse of access rights. The prototype implements a feedback loop to monitor an authorisation infrastructure in terms of modelling the state of access control and user behaviour, analyse potential solutions for handling malicious behaviour, and act upon the infrastructure to control future access control decisions. The framework was evaluated against mitigation of simulated insider attacks, involving the abuse of access rights governed by access control methodologies. In addition, to investigate the framework’s approach in a diverse and unpredictable environment, a live experiment was conducted. This evaluated the mitigation of abuse performed by real users as well as demonstrating the consequence of self-adaptation through observation of user response

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    Evolution Oriented Monitoring oriented to Security Properties for Cloud Applications

    Get PDF
    Internet is changing from an information space to a dynamic computing space. Data distribution and remotely accessible software services, dynamism, and autonomy are prime attributes. Cloud technology offers a powerful and fast growing approach to the provision of infrastructure (platform and software services) avoiding the high costs of owning, operating, and maintaining the computational infrastructures required for this purpose. Nevertheless, cloud technology still raises concerns regarding security, privacy, governance, and compliance of data and software services offered through it. Concerns are due to the difficulty to verify security properties of the different types of applications and services available through cloud technology, the uncertainty of their owners and users about the security of their services, and the applications based on them, once they are deployed and offered through a cloud. This work presents an innovative and novel evolution-oriented, cloud-specific monitoring model (including an architecture and a language) that aim at helping cloud application developers to design and monitor the behavior and functionality of their applications in a cloud environment.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    CyberGuarder: a virtualization security assurance architecture for green cloud computing

    Get PDF
    Cloud Computing, Green Computing, Virtualization, Virtual Security Appliance, Security Isolation

    Context constraint integration and validation in dynamic web service compositions

    Get PDF
    System architectures that cross organisational boundaries are usually implemented based on Web service technologies due to their inherent interoperability benets. With increasing exibility requirements, such as on-demand service provision, a dynamic approach to service architecture focussing on composition at runtime is needed. The possibility of technical faults, but also violations of functional and semantic constraints require a comprehensive notion of context that captures composition-relevant aspects. Context-aware techniques are consequently required to support constraint validation for dynamic service composition. We present techniques to respond to problems occurring during the execution of dynamically composed Web services implemented in WS-BPEL. A notion of context { covering physical and contractual faults and violations { is used to safeguard composed service executions dynamically. Our aim is to present an architectural framework from an application-oriented perspective, addressing practical considerations of a technical framework

    DYNAMICO: A Reference Model for Governing Control Objectives and Context Relevance in Self-Adaptive Software Systems

    Get PDF
    International audienceDespite the valuable contributions on self-adaptation, most implemented approaches assume adaptation goals and monitoring infrastructures as non-mutable, thus constraining their applicability to systems whose context awareness is restricted to static monitors. Therefore, separation of concerns, dynamic monitoring, and runtime requirements variability are critical for satisfying system goals under highly changing environments. In this chapter we present DYNAMICO, a reference model for engineering adaptive software that helps guaranteeing the coherence of (i) adaptation mechanisms with respect to changes in adaptation goals; and (ii) monitoring mechanisms with respect to changes in both adaptation goals and adaptation mechanisms. DYNAMICO improves the engineering of self-adaptive systems by addressing (i) the management of adaptation properties and goals as control objectives; (ii) the separation of concerns among feedback loops required to address control objectives over time; and (iii) the management of dynamic context as an independent control function to preserve context-awareness in the adaptation mechanism
    • 

    corecore