18 research outputs found

    On Comparison Between Repetitive Controller and PI Controller Tracking Performance

    Full text link
    Tracking periodic signals are common task in many control problems. One of the examples is movement control of pick and place robot in industry. The requirement of high tracking accuracy becomes very important in many applications. Therefore, a sophisticated control algorithm that manages to achieve high accuracy tracking of periodic command is required. Repetitive Control (RC) based on internal model principle is one of control schemes that can be employed to achieve perfect tracking of periodic signal. On the other hand, Proportional Integral (PI) controller can also be used for tracking. This paper compares the tracking performance of PI controller, RC, and PI with RC, where PI with RC here is integration between PI controller and RC. Step by step design to obtain the parameters of PI, RC and PI with RC are given. A simulation on servo motor system is carried out to assess the performance of RC, PI, andPI with RC respectively. From the simulation results, the transient response and tracking accuracy are thoroughly discussed

    On Comparison Between Repetitive Controller and PI Controller Tracking Performance

    Get PDF
    Tracking periodic signals are common task in many control problems. One of the examples is movement control of pick and place robot in industry. The requirement of high tracking accuracy becomes very important in many applications. Therefore, a sophisticated control algorithm that manages to achieve high accuracy tracking of periodic command is required. Repetitive Control (RC) based on internal model principle is one of control schemes that can be employed to achieve perfect tracking of periodic signal. On the other hand, Proportional Integral (PI) controller can also be used for tracking. This paper compares the tracking performance of PI controller, RC, and PI with RC, where PI with RC here is integration between PI controller and RC. Step by step design to obtain the parameters of PI, RC and PI with RC are given. A simulation on servo motor system is carried out to assess the performance of RC, PI, andPI with RC respectively. From the simulation results, the transient response and tracking accuracy are thoroughly discussed

    Design of cross-coupled CMAC for contour-following – a reinforcement-based ILC approach

    Get PDF
    One of the most popular applications of a bi-axial motion stage is precision motion control. The reduction of tracking error and contour error is one of the most coveted goals in precision motion control systems. The accuracy of a motion control system is often affected by external disturbances. In addition, system non-linearity such as friction also represents a major hurdle to motion precision. In order to deal with the aforementioned problem, this paper proposes a fuzzy logic-based Reinforcement Iterative Learning Control (RILC) and a Cross-Coupled Cerebellar Model Articulation Controller (CCCMAC). In particular, the proposed fuzzy logicbased RILC and a LuGre friction model-based compensation approach are exploited to improve motion accuracy. The fuzzy logic-based RILC aims at reducing tracking error and compensating for external disturbance, while the LuGre friction model is responsible for friction compensation. In addition, the CCCMAC consisting of a cerebellar model articulation controller and a cross-coupled controller aims at reducing contour error and dealing with the problem of dynamics mismatch between different axes. Performance comparisons between the proposed fuzzy logic-based Reinforcement Iterative Learning Cross-Coupled Cerebellar Model Articulation Controller (RIL–CCCMAC) and several existing control schemes are conducted on a bi-axial motion stage. Experimental results verify the effectiveness of the proposed RIL–CCCMAC

    Gain-scheduled sliding-mode-type iterative learning control design for mechanical systems

    Get PDF
    In this paper, a novel gain-scheduled sliding-mode-type (SM-type) iterative learning (IL) control approach is proposed for the high-precision trajectory tracking of mechanical systems subject to model uncertainties and disturbances. Based on the SM variable, the proposed controller is synthesized involving a feedback regulation item, a feedforward learning item, and a robust switching item. The feedback regulation item is adopted to regulate the position and velocity tracking errors, the feedforward learning item is applied to handle the model uncertainties and repetitive disturbance, and the robust switching item is introduced to compensate the nonrepetitive disturbance and linearization residual error. Moreover, the gain-scheduled mechanism is employed for both the feedback regulation item and feedforward learning item to enhance the convergence speed. Convergence analysis illustrates that the position and velocity tracking errors can eventually regulate to zero under the proposed controller. By combining the advantages of both SM control and IL control, the proposed controller has strong robustness against model uncertainties and disturbances. Lastly, simulations and comparisons are provided to evaluate the efficiency and excellent performance of the proposed control approach

    Contour error compensation based on feed rate adjustment

    Get PDF
    To improve the performance of computer numerical control (CNC) machining, especially for large-curvature trajectories, this paper presents a contour error compensation algorithm based on reference trajectory modification. In order to estimate the contour error accurately and efficiently, a contour error estimation model is established. The reference trajectory is modified on the basis of the estimated contour error and partitioned into different segments, which adopt different feed rates according to a corner detection algorithm. The effectiveness of this contour error compensation algorithm is verified by experiments on a CNC machine tool

    Modeling and Contour Control of Multi-Axis Linear Driven Machine Tools

    Get PDF
    In modern manufacturing industries, many applications require precision motion control of multi-agent systems, like multi-joint robot arms and multi-axis machine tools. Cutter (end effector) should stay as close as possible to the reference trajectory to ensure the quality of the final products. In conventional computer numerical control (CNC), the control unit of each axis is independently designed to achieve the best individual tracking performance. However, this becomes less effective when dealing with multi-axis contour following tasks because of the lack of coordination among axes. This dissertation studies the control of multi-axis machine tools with focus on reducing the contour error. The proposed research explicitly addresses the minimization of contour error and treats the multi-axis machine tool as a multi-input-multi-output (MIMO) system instead of several decoupled single-input-single-output (SISO) systems. New control schemes are developed to achieve superior contour following performance even in the presence of disturbances. This study also extends the applications of the proposed control system from plane contours to regular contours in R3. The effectiveness of the developed control systems is experimentally verified on a micro milling machine

    A generalized scheme for the global adaptive regulation of robot manipulators with bounded inputs

    Get PDF
    "In this work, a generalized adaptive control scheme for the global position stabilization of robot manipulators with bounded inputs is proposed. It gives rise to various families of bounded controllers with adaptive gravity compensation. Compared with the adaptive approaches previously developed in a bounded-input context, the proposed scheme guarantees the adaptive regulation objective: globally, avoiding discontinuities in the control expression as well as in the adaptation auxiliary dynamics, preventing the inputs to reach their natural saturation bounds, and imposing no saturation-avoidance restriction on the control gains. Experimental results corroborate the efficiency of the proposed adaptive scheme.

    Development of the UMAC-based control system with application to 5-axis ultraprecision micromilling machines

    Get PDF
    Increasing demands from end users in the fields of optics, defence, automotive, medical, aerospace, etc. for high precision 3D miniaturized components and microstructures from a range of materials have driven the development in micro and nano machining and changed the manufacturing realm. Conventional manufacturing processes such as chemical etching and LIGA are found unfavourable or limited due to production time required and have led mechanical micro machining to grow further. Mechanical micro machining is an ideal method to produce high accuracy micro components and micro milling is the most flexible enabling process and is thus able to generate a wider variety of complex micro components and microstructures. Ultraprecision micromilling machine tools are required so as to meet the accuracy, surface finish and geometrical complexity of components and parts. Typical manufacturing requirements are high dimensional accuracy being better than 1 micron, flatness and roundness better than 50 nm and surface finish ranging between 10 and 50 nm. Manufacture of high precision components and parts require very intricate material removal procedure. There are five key components that include machine tools, cutting tools, material properties, operation variables and environmental conditions, which constitute in manufacturing high quality components and parts. End users assess the performance of a machine tool based on the dimensional accuracy and surface quality of machined parts including the machining time. In this thesis, the emphasis is on the design and development of a control system for a 5-axis bench-type ultraprecision micromilling machine- Ultra-Mill. On the one hand, the developed control system is able to offer high motion and positioning accuracy, dynamic stiffness and thermal stability for motion control, which are essential for achieving the machining accuracy and surface finish desired. On the other hand, the control system is able to undertake in-process inspection and condition monitoring of the machine tool and process. The control of multi-axis precision machines with high-speed and high-accuracy motions and positioning are desirable to manufacture components with high accuracy and complex features to increase productivity and maintain machine stability, etc. The development of the control system has focused on fast, accurate and robust positioning requirements at the machine system design stage. Apart from the mechanical design, the performance of the entire precision systems is greatly dependent on diverse electrical and electronics subsystems, controllers, drive instruments, feedback devices, inspection and monitoring system and software. There are some variables that dynamically alter the system behaviour and sensitivity to disturbance that are not ignorable in the micro and nano machining realm. In this research, a structured framework has been developed and integrated to aid the design and development of the control system. The framework includes critically reviewing the state of the art of ultraprecision machining tools, understanding the control system technologies involved, highlighting the advantages and disadvantages of various control system methods for ultraprecision machines, understanding what is required by end-users and formulating what actually makes a machine tool be an ultraprecision machine particularly from the control system perspective. In the design and development stage, the possession of mechatronic know-how is essential as the design and development of the Ultra-Mill is a multidisciplinary field. Simulation and modelling tool such as Matlab/Simulink is used to model the most suitable control system design. The developed control system was validated through machining trials to observe the achievable accuracy, experiments and testing of subsystems individually (slide system, tooling system, monitoring system, etc.). This thesis has successfully demonstrated the design and development of the control system for a 5-axis ultraprecision machine tool- Ultra-Mill, with high performance characteristics, fast, accurate, precise, etc. for motion and positioning, high dynamic stiffness, robustness and thermal stability, whereby was provided and maintained by the control system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore