1,078 research outputs found

    ADAPTIVE RESOURCE ALLOCATION FOR WIRELESS MULTICAST MIMO-OFDM SYSTEMS

    Get PDF
    Multiple antenna orthogonal frequency division multiple access (OFDMA) is a promissing technique for the high downlink capacity in the next generation wireless systems, in which adaptive resource allocation would be an important research issue that can significantly improve the performance with guaranteed QoS for users. Moreover, most of the current source allocation algorithms are limited to the unicast system. In this paper, dynamic resource allocation is studied for multiple antenna OFDMA based systems which provide multicast service. The performance of multicast system is simulated and compared with that of the unicast system. Numerical results also show that the propossed algorithms improve the system capacity significantly compared with the conventional scheme

    A low complexity resource allocation algorithm for multicast service delivery in OFDMA networks

    Get PDF
    Allocating and managing radio resources to multicast transmissions in Orthogonal Frequency-Division Multiple Access (OFDMA) systems is the challenging research issue addressed by this paper. A subgrouping technique, which divides the subscribers into subgroups according to the experienced channel quality, is considered to overcome the throughput limitations of conventional multicast data delivery schemes. A low complexity algorithm, designed to work with different resource allocation strategies, is also proposed to reduce the computational complexity of the subgroup formation problem. Simulation results, carried out by considering the Long Term Evolution (LTE) system based on OFDMA, testify the effectiveness of the proposed solution, which achieves a near-optimal performance with a limited computational load for the system

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency

    MLTE Algorithm for Multicast Service Delivery in OFDMA Networks

    Get PDF
    Dispensing and overseeing radio resources to the multi-cast transmissions in OFDMA (orthogonal-frequency division-multiple-access) systems is testing exploration issue tended to by this paper. A sub-grouping technique, which separates the subscribers into subgroups as indicated by the accomplished channel quality, is considered to defeat the throughput confinements of conventional multicast data conveyance schemes. A low complexity algorithm intended to work with diverse resource allocation strategies, is additionally proposed to diminish the computational complexity of the subgroup development issue. Reproduction results, did by considering the long term evolution system taking into account OFDMA, affirm the adequacy of the proposed arrangement, which accomplishes a close ideal execution with a restricted computational load for the system. In this paper we are introducing the MLTE for improve the MBPS speed for fix network coverage at uniform and sparse. DOI: 10.17762/ijritcc2321-8169.150713

    Optimal 4G OFDMA Dynamic Subcarrier and Power Auction-based Allocation towards H.264 Scalable Video Transmission

    Get PDF
    In this paper, authors presented a price maximization scheme for optimal orthogonal frequency division for multiple access (OFDMA) subcarrier allocation for wireless video unicast/multicast scenarios. They formulate a pricing based video utility function for H.264 based wireless scalable video streaming, thereby achieving a trade-off between price and QoS fairness. These parametric models for scalable video rate and quality characterization arederived from the standard JSVM reference codec for the SVC extension of the H.264/AVC, and hence are directly applicable in practical wireless scenarios. With the aid of these models, they proposed auction based framework for revenue maximization of the transmitted video streams in the unicast and multicast 4G scenario. A closedform expression is derived for the optimal scalable video quantization step-size subject to the constraints of theunicast/multicast users in 4G wireless systems. This yields the optimal OFDMA subcarrier allocation for multi-userscalable video multiplexing. The proposed scheme is cognizant of the user modulation and code rate, and is henceamenable to adaptive modulation and coding (AMC) feature of 4G wireless networks. Further, they also consider aframework for optimal power allocation based on a novel revenue maximization scheme in OFDMA based wireless broadband 4G systems employing auction bidding models. This is formulated as a constrained convex optimization problem towards sum video utility maximization. We observe that as the demand for a video stream increases inbroadcast/multicast scenarios, higher power is allocated to the corresponding video stream leading to a gain in the overall revenue/utility. We simulate a standard WiMAX based 4G video transmission scenario to validate the performance of the proposed optimal 4G scalable video resource allocation schemes. Simulations illustrate that the proposed optimal band width and power allocation schemes result in a significant performance improvement over the suboptimal equal resource allocation schemes for scalable video transmission.Defence Science Journal, 2013, 63(1), pp.15-24, DOI:http://dx.doi.org/10.14429/dsj.63.375

    Interference-Aware Downlink Resource Management for OFDMA Femtocell Networks

    Get PDF
    Femtocell is an economical solution to provide high speed indoor communication instead of the conventional macro-cellular networks. Especially, OFDMA femtocell is considered in the next generation cellular network such as 3GPP LTE and mobile WiMAX system. Although the femtocell has great advantages to accommodate indoor users, interference management problem is a critical issue to operate femtocell network. Existing OFDMA resource management algorithms only consider optimizing system-centric metric, and cannot manage the co-channel interference. Moreover, it is hard to cooperate with other femtocells to control the interference, since the self-configurable characteristics of femtocell. This paper proposes a novel interference-aware resource allocation algorithm for OFDMA femtocell networks. The proposed algorithm allocates resources according to a new objective function which reflects the effect of interference, and the heuristic algorithm is also introduced to reduce the complexity of the original problem. The Monte-Carlo simulation is performed to evaluate the performance of the proposed algorithm compared to the existing solutions

    Multicast Scheduling and Resource Allocation Algorithms for OFDMA-Based Systems: A Survey

    Get PDF
    Multicasting is emerging as an enabling technology for multimedia transmissions over wireless networks to support several groups of users with flexible quality of service (QoS)requirements. Although multicast has huge potential to push the limits of next generation communication systems; it is however one of the most challenging issues currently being addressed. In this survey, we explain multicast group formation and various forms of group rate determination approaches. We also provide a systematic review of recent channel-aware multicast scheduling and resource allocation (MSRA) techniques proposed for downlink multicast services in OFDMA based systems. We study these enabling algorithms, evaluate their core characteristics, limitations and classify them using multidimensional matrix. We cohesively review the algorithms in terms of their throughput maximization, fairness considerations, performance complexities, multi-antenna support, optimality and simplifying assumptions. We discuss existing standards employing multicasting and further highlight some potential research opportunities in multicast systems

    Efficient Multicast in Next Generation Mobile Networks

    Get PDF
    corecore