667 research outputs found

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Nanoelectronic Design Based on a CNT Nano-Architecture

    Get PDF

    Medium access control in wireless network-on-chip: a context analysis

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Wireless on-chip communication is a promising candidate to address the performance and efficiency issues that arise when scaling current NoC techniques to manycore processors. A WNoC can serve global and broadcast traffic with ultra-low latency even in thousand-core chips, thus acting as a natural complement to conventional and throughput-oriented wireline NoCs. However, the development of MAC strategies needed to efficiently share the wireless medium among the increasing number of cores remains a considerable challenge given the singularities of the environment and the novelty of the research area. In this position article, we present a context analysis describing the physical constraints, performance objectives, and traffic characteristics of the on-chip communication paradigm. We summarize the main differences with respect to traditional wireless scenarios, and then discuss their implications on the design of MAC protocols for manycore WNoC, with the ultimate goal of kickstarting this arguably unexplored research area.Peer ReviewedPostprint (author's final draft

    6G Enabled Smart Infrastructure for Sustainable Society: Opportunities, Challenges, and Research Roadmap

    Get PDF
    The 5G wireless communication network is currently faced with the challenge of limited data speed exacerbated by the proliferation of billions of data-intensive applications. To address this problem, researchers are developing cutting-edge technologies for the envisioned 6G wireless communication standards to satisfy the escalating wireless services demands. Though some of the candidate technologies in the 5G standards will apply to 6G wireless networks, key disruptive technologies that will guarantee the desired quality of physical experience to achieve ubiquitous wireless connectivity are expected in 6G. This article first provides a foundational background on the evolution of different wireless communication standards to have a proper insight into the vision and requirements of 6G. Second, we provide a panoramic view of the enabling technologies proposed to facilitate 6G and introduce emerging 6G applications such as multi-sensory–extended reality, digital replica, and more. Next, the technology-driven challenges, social, psychological, health and commercialization issues posed to actualizing 6G, and the probable solutions to tackle these challenges are discussed extensively. Additionally, we present new use cases of the 6G technology in agriculture, education, media and entertainment, logistics and transportation, and tourism. Furthermore, we discuss the multi-faceted communication capabilities of 6G that will contribute significantly to global sustainability and how 6G will bring about a dramatic change in the business arena. Finally, we highlight the research trends, open research issues, and key take-away lessons for future research exploration in 6G wireless communicatio

    Virtual Runtime Application Partitions for Resource Management in Massively Parallel Architectures

    Get PDF
    This thesis presents a novel design paradigm, called Virtual Runtime Application Partitions (VRAP), to judiciously utilize the on-chip resources. As the dark silicon era approaches, where the power considerations will allow only a fraction chip to be powered on, judicious resource management will become a key consideration in future designs. Most of the works on resource management treat only the physical components (i.e. computation, communication, and memory blocks) as resources and manipulate the component to application mapping to optimize various parameters (e.g. energy efficiency). To further enhance the optimization potential, in addition to the physical resources we propose to manipulate abstract resources (i.e. voltage/frequency operating point, the fault-tolerance strength, the degree of parallelism, and the configuration architecture). The proposed framework (i.e. VRAP) encapsulates methods, algorithms, and hardware blocks to provide each application with the abstract resources tailored to its needs. To test the efficacy of this concept, we have developed three distinct self adaptive environments: (i) Private Operating Environment (POE), (ii) Private Reliability Environment (PRE), and (iii) Private Configuration Environment (PCE) that collectively ensure that each application meets its deadlines using minimal platform resources. In this work several novel architectural enhancements, algorithms and policies are presented to realize the virtual runtime application partitions efficiently. Considering the future design trends, we have chosen Coarse Grained Reconfigurable Architectures (CGRAs) and Network on Chips (NoCs) to test the feasibility of our approach. Specifically, we have chosen Dynamically Reconfigurable Resource Array (DRRA) and McNoC as the representative CGRA and NoC platforms. The proposed techniques are compared and evaluated using a variety of quantitative experiments. Synthesis and simulation results demonstrate VRAP significantly enhances the energy and power efficiency compared to state of the art.Siirretty Doriast

    3D-SoftChip: A novel 3D vertically integrated adaptive computing system [thesis]

    Get PDF
    At present, as we enter the nano and giga-scaled integrated-circuit era, there are many system design challenges which must be overcome to resolve problems in current systems. The incredibly increased nonrecurring engineering (NRE) cost, abruptly shortened Time-to- Market (ITA) period and ever widening design productive gaps are good examples illustrating the problems in current systems. To cope with these problems, the concept of an Adaptive Computing System is becoming a critical technology for next generation computing systems. The other big problem is an explosion in the interconnection wire requirements in standard planar technology resulting from the very high data-bandwidth requirements demanded for real-time communications and multimedia signal processing. The concept of 3D-vertical integration of 2D planar chips becomes an attractive solution to combat the ever increasing interconnect wire requirements. As a result, this research proposes the concept of a novel 3D integrated adaptive computing system, which we term 3D-ACSoC. The architecture and advanced system design methodology of the proposed 3D-SoftChip as a forthcoming giga-scaled integrated circuit computing system has been introduced, along with high-level system modeling and functional verification in the early design stage using SystemC

    Pond: A Robust, scalable, massively parallel computer architecture

    Get PDF
    A new computer architecture, intended for implementation in late and post silicon technologies, is proposed. The architecture is a fine-grained, inherently parallel system consisting of a large grid of thousands or millions of simple atomic processors (APs) employing a simple instruction set. Each AP is configured as either a program instruction or data storage element. These elements are organized into logical entities, analogous to traditional programming functions/methods and data structures. Programming work is underway to compile and run programs from traditional sequential code where parallelism is automatically discovered at the high level on both instruction level and function level, and integrated into the object code that is then sent to the processor. The result is a massively parallel architecture that fully exploits instruction and thread-level parallelism. The architecture design is presented, in-progress work involving conversion of existing code is discussed, and examples are shown to indicate the speedup potential that exists in this new architecture when compared to current architectures

    Programmable photonic circuits

    Get PDF
    [EN] The growing maturity of integrated photonic technology makes it possible to build increasingly large and complex photonic circuits on the surface of a chip. Today, most of these circuits are designed for a specific application, but the increase in complexity has introduced a generation of photonic circuits that can be programmed using software for a wide variety of functions through a mesh of on-chip waveguides, tunable beam couplers and optical phase shifters. Here we discuss the state of this emerging technology, including recent developments in photonic building blocks and circuit architectures, as well as electronic control and programming strategies. We cover possible applications in linear matrix operations, quantum information processing and microwave photonics, and examine how these generic chips can accelerate the development of future photonic circuits by providing a higher-level platform for prototyping novel optical functionalities without the need for custom chip fabricationBogaerts, W.; Pérez-López, D.; Capmany Francoy, J.; Miller, DAB.; Poon, J.; Englund, D.; Morichetti, F.... (2020). Programmable photonic circuits. Nature. 586(7828):207-216. https://doi.org/10.1038/s41586-020-2764-0S2072165867828Chen, X. et al. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 106, 2101–2116 (2018).Smit, M., Williams, K. & van der Tol, J. Past, present, and future of InP-based photonic integration. APL Photonics 4, 050901 (2019).Capmany, J. & Perez, D. Programmable Integrated Photonics (Oxford Univ. Press, 2020). The first book on the subject of programmable photonics gives a detailed overview of the fundamental principles, architectures and potential applications.Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018). One of the largest-scale demonstrations of a programmable photonic circuit, using a silicon photonics forward-only mesh that maps 26 input modes onto 26 output modes, for use in deep learning and quantum information processing.Miller, D. A. B. Self-configuring universal linear optical component. Photon. Res. 1, 1–15 (2013). This foundational paper in the field of programmable photonics is the first to bring together waveguide meshes with self-configuration algorithms that require no active computation, including the concept of the self-aligning beam coupler.Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).Harris, N. C. et al. Large-scale quantum photonic circuits in silicon. Nanophotonics 5, 456–468 (2016).Notaros, J. et al. Programmable dispersion on a photonic integrated circuit for classical and quantum applications. Opt. Express 25, 21275–21285 (2017).Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. An optimal design for universal multiport interferometers. Optica 12, 1460–1465 (2016).Perez-Lopez, D. Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms. IEEE J. Sel. Top. Quantum Electron. 26, 8301312 (2020).Ribeiro, A., Ruocco, A., Vanacker, L. & Bogaerts, W. Demonstration of a 4×4-port universal linear circuit. Optica 3, 1348–1357 (2016).Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017).Mennea, P. L. et al. Modular linear optical circuits. Optica 5, 1087–1090 (2018).Taballione, C. et al. 8×8 programmable quantum photonic processor based on silicon nitride waveguides. In Frontiers in Optics, JTu3A.58 (Optical Society of America, 2018). A demonstration of an 8 × 8 forward-only programmable linear circuit in silicon nitride that benefits from the notably low optical losses of this material and is therefore attractive for linear quantum operations on single photons.Perez, D. et al. Silicon photonics rectangular universal interferometer. Laser Photonics Rev. 11, 1700219 (2017).Xie, Y. et al. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity. Nanophotonics 7, 421–454 (2017). A comprehensive overview of the various ways in which a programmable photonic circuit can be used to process microwave signals, and on how this type of circuit is transitioning from custom ASPICs to generic programmable PICs.Hall, T. J. & Hasan, M. Universal discrete Fourier optics RF photonic integrated circuit architecture. Opt. Express 24, 7600–7610 (2016).Dyakonov, I. V. et al. Reconfigurable photonics on a glass chip. Phys. Rev. Appl. 10, 044048 (2018).Shokraneh, F., Geoffroy-Gagnon, S., Nezami, M. S. & Liboiron-Ladouceur, O. A single layer neural network implemented by a 4×4 MZI-based optical processor. IEEE Photonics J. 11, 4501612 (2019).Lu, L., Zhou, L. & Chen, J. Programmable SCOW mesh silicon photonic processor for linear unitary operator. Micromachines 10, 646 (2019).Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).Schaeff, C., Polster, R., Huber, M., Ramelow, S. & Zeilinger, A. Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica 2, 523–529 (2015).Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photon. 6, 45–49 (2012).Miller, D. A. B. Waves, modes, communications, and optics: a tutorial. Adv. Opt. Photonics 11, 679 (2019).Miller, D. A. B. Self-aligning universal beam coupler. Opt. Express 21, 6360–6370 (2013).Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).Annoni, A. et al. Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6, e17110 (2017). Early demonstration of a forward-only programmable mesh used to unmix different modes in a waveguide, implementing integrated transparent detectors that measure the light intensity in the waveguide without inducing additional optical loss.Pai, S. et al. Parallel programming of an arbitrary feedforward photonic network. IEEE J. Sel. Top. Quantum Electron. 25, 6100813 (2020).Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).Wang, M., Alves, A. R., Xing, Y. & Bogaerts, W. Tolerant, broadband tunable 2×2 coupler circuit. Opt. Express 28, 5555–5566 (2020).Pérez-López, D., Gutierrez, A. M., Sánchez, E., DasMahapatra, P. & Capmany, J. Integrated photonic tunable basic units using dual-drive directional couplers. Opt. Express 27, 38071 (2019).Choutagunta, K., Roberts, I., Miller, D. A. B. & Kahn, J. M. Adapting Mach–Zehnder mesh equalizers in direct-detection mode-division-multiplexed links. J. Light. Technol. 38, 723–735 (2020).Miller, D. A. B. Analyzing and generating multimode optical fields using self-configuring networks. Optica 7, 794–801 (2020).Morizur, J.-F. et al. Programmable unitary spatial mode manipulation. J. Opt. Soc. Am. A 27, 2524 (2010).Labroille, G. et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express 22, 15599–15607 (2014).Tanomura, R., Tang, R., Ghosh, S., Tanemura, T. & Nakano, T. Robust integrated optical unitary converter using multiport directional couplers. J. Light. Technol. 38, 60–66 (2020).Miller, D. A. B. Setting up meshes of interferometers – reversed local light interference method. Opt. Express 25, 29233 (2017).Li, H. W. et al. Calibration and high fidelity measurement of a quantum photonic chip. New J. Phys. 15, 063017 (2013).Cong, G. et al. Arbitrary reconfiguration of universal silicon photonic circuits by bacteria foraging algorithm to achieve reconfigurable photonic digital-to-analog conversion. Opt. Express 27, 24914 (2019).Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 1–9 (2017). The first experimental demonstration of a recirculating waveguide mesh with seven unit cells that can be programmed to perform more than a hundred different functions.Pérez, D., Gasulla, I. & Capmany, J. Field-programmable photonic arrays. Opt. Express 26, 27265 (2018).Rahim, A., Spuesens, T., Baets, R. & Bogaerts, W. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE 106, 2313–2330 (2018).Munoz, P. et al. Foundry developments toward silicon nitride photonics from visible to the mid-infrared. IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).Teng, M. et al. Miniaturized silicon photonics devices for integrated optical signal processors. J. Light. Technol. 38, 6–17 (2020).Sacher, W. D. et al. Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices. Proc. IEEE 106, 2232–2245 (2018).Baudot, C. et al. Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials. In 2017 IEEE Int. Electron Devices Meeting, 765–768 (IEEE, 2017).Fahrenkopf, N. M. et al. The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 25, 8201406 (2019).Chiles, J. et al. Multi-planar amorphous silicon photonics with compact interplanar couplers, cross talk mitigation, and low crossing loss. APL Photonics 2, 116101 (2017).Van Campenhout, J., Green, W. M. J., Assefa, S. & Vlasov, Y. A. Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices. Opt. Lett. 35, 1013–1015 (2010).Masood, A. et al. Comparison of heater architectures for thermal control of silicon photonic circuits. In Proc. 10th Int. Conference on Group IV Photonics 83–84 (IEEE, 2013).Milanizadeh, M., Aguiar, D., Melloni, A. & Morichetti, F. Canceling thermal cross-talk effects in photonic integrated circuits. J. Light. Technol. 37, 1325–1332 (2019).Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010); corrigendum 4, 660 (2010).Memon, F. A. et al. Silicon oxycarbide platform for integrated photonics. J. Light. Technol. 38, 784–791 (2020).Jin, W., Polcawich, R. G., Morton, P. A. & Bowers, J. E. Piezoelectrically tuned silicon nitride ring resonator. Opt. Express 26, 3174–3187 (2018).Hosseini, N. et al. Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film. Opt. Express 23, 14018 (2015).De Cort, W., Beeckman, J., Claes, T., Neyts, K. & Baets, R. Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Opt. Lett. 36, 3876–3878 (2011).Xing, Y. et al. Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration. IEEE Photonics Technol. Lett. 27, 1269–1272 (2015).Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380 (2019).Alexander, K. et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 9, 3444 (2018).Leuthold, J. et al. Silicon-organic hybrid electro-optical devices. IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).Errando-Herranz, C. et al. MEMS for photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 26, 8200916 (2020).Quack, N. et al. MEMS-enabled silicon photonic integrated devices and circuits. IEEE J. Quantum Electron. 56, 8400210 (2020).Hoessbacher, C. et al. The plasmonic memristor: a latching optical switch. Optica 1, 198 (2014).Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465–476 (2017).Morichetti, F. et al. Non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).Jayatilleka, H., Shoman, H., Chrostowski, L. & Shekhar, S. Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits. Optica 6, 84–91 (2019).Grillanda, S. et al. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1, 129 (2014).Annoni, A. et al. Automated routing and control of silicon photonic switch fabrics. IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).Dumais, P. et al. Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. J. Light. Technol. 36, 233–238 (2018).Chen, H., Luo, X. & Poon, A. W. Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p–i–n diode embedded silicon microring resonator. Appl. Phys. Lett. 95, 171111 (2009).Ribeiro, A. & Bogaerts, W. Digitally controlled multiplexed silicon photonics phase shifter using heaters with integrated diodes. Opt. Express 25, 29778 (2017).Zimmermann, L. et al. BiCMOS silicon photonics platform. In Optical Fiber Communication Conference Th4E-5 (Optical Society of America, 2015).Orcutt, J. S. et al. Nanophotonic integration in state-of-the-art CMOS foundries. Opt. Express 19, 2335–2346 (2011).Stojanović, V. et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes. Opt. Express 26, 13106 (2018).Carroll, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci. 6, 426 (2016).Patterson, D., De Sousa, I. & Archard, L.-M. The future of packaging with silicon photonics. Chip Scale Rev. 21, 1–10 (2017).Ribeiro, A., Declercq, S., Khan, U., Wang, M. & Van Iseghem, L. Column-row addressing of thermo-optic phase shifters for controlling large silicon photonic circuits. IEEE J. Sel. Top. Quantum Electron. 26, 6100708 (2020).Pantouvaki, M. et al. Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform. J. Light. Technol. 35, 631–638 (2017).Chen, H. et al. 100-Gbps RZ data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors. J. Light. Technol. 35, 722–726 (2017).Pérez, D., Gasulla, I. & Capmany, J. Toward programmable microwave photonics processors. J. Light. Technol. 36, 519–532 (2018).Zoldak, M., Halmo, L., Turkiewicz, J. P., Schumann, S. & Henker, R. Packaging of ultra-high speed optical fiber data interconnects. In Opt. Fibers and Their Applications 2017 10325, 103250R (International Society for Optics and Photonics, 2017).Willner, A. E., Khaleghi, S., Chitgarha, M. R. & Yilmaz, O. F. All-optical signal processing. J. Light. Technol. 32, 660–680 (2014).Ramirez, J. M. et al. III–V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 26, 6100213 (2020).Liu, A. Y. & Bowers, J. Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).Zhang, J. et al. Transfer-printing-based integration of a III–V-on-silicon distributed feedback laser. Opt. Express 26, 8821–8830 (2018).Thiessen, T. et al. Back-side-on-BOX heterogeneously integrated III–V-on-silicon O-band distributed feedback lasers. J. Light. Technol. 38, 3000–3006 (2020).López, A., Perez, D., DasMahapatra, P. & Capmany, J. Auto-routing algorithm for field-programmable photonic gate arrays. Opt. Express 28, 737–752 (2020).Chen, X., Stroobant, P., Pickavet, M. & Bogaerts, W. Graph representations for programmable photonic circuits. J. Light. Technol. https://ieeexplore.ieee.org/document/9056549 (2020).Zand, I. & Bogaerts, W. Effects of coupling and phase imperfections in programmable photonic hexagonal waveguide meshes. Photon. Res. 8, 211–218 (2020).Bogaerts, W. & Rahim, A. Programmable photonics: an opportunity for an accessible large-volume PIC ecosystem. IEEE J. Sel. Top. Quantum Electron. 26, 1–17 (2020). A simple techno-economic analysis of how general-purpose programmable photonic circuits can reduce the cost of prototyping photonics applications.Dubrovsky, M., Ball, M. & Penkovsky, B. Optical proof of work. Preprint at https://arxiv.org/abs/1911.05193 (2019).Paquot, Y., Schroeder, J., Pelusi, M. D. & Eggleton, B. J. All-optical hash code generation and verification for low latency communications. Opt. Express 21, 23873 (2013).Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2019).Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP-InGaAsP. J. Light. Technol. 29, 1611–1619 (2011).Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475 (2011).Liu, L. et al. Photonic measurement of microwave frequency using a silicon microdisk resonator. Opt. Commun. 335, 266–270 (2015).Perez-Lopez, D., Sanchez, E. & Capmany, J. Programmable true-time delay lines using integrated waveguide meshes. J. Light. Technol. 36, 4591–4601 2018.Novak, D. et al. Radio-over-fiber technologies for emerging wireless systems. IEEE J. Quantum Electron. 52, 0600311 (2016).Behroozpour, B., Sandborn, P. A. M., Wu, M. C. & Boser, B. E. Lidar system architectures and circuits. IEEE Commun. Mag. 55, 135–142 (2017).Heck, M. J. R. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 6, 93–107 (2017).Van Acoleyen, K. Efficient light collection and direction-of-arrival estimation using a photonic integrated circuit. Photonics 24, 933–935 (2012).Miller, D. A. B. Establishing optimal wave communication channels automatically. J. Light. Technol. 31, 3987–3994 (2013).Luan, E., Shoman, H., Ratner, D. M., Cheung, K. C. & Chrostowski, L. Silicon photonic biosensors using label-free detection. Sensors 18, 3519 (2018).Subramanian, A. Z. et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip. Photon. Res. 3, B47–B59 (2015).Li, Y. et al. Six-beam homodyne laser Doppler vibrometry based on silicon photonics technology. Opt. Express 26, 3638 (2018).Trimberger, S. M. Three ages of FPGAs: a retrospective on the first thirty years of FPGA technology. Proc. IEEE 103, 318–331 (2015).Mohomed, I. & Dutta, P. The age of DIY and dawn of the maker movement. Mob. Comput. Commun. Rev. 18, 41–43 (2015).Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 7, 79 (2018).Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).Steinbrecher, G. R., Olson, J. P., Englund, D. & Carolan, J. Quantum optical neural networks. npj Quantum Inf. 5, 60 (2019).Miatto, F. M., Epping, M. & Lütkenhaus, N. Hamiltonians for one-way quantum repeaters. Quantum 2, 75 (2018)
    • …
    corecore