4,748 research outputs found

    Deep Mean-Shift Priors for Image Restoration

    Full text link
    In this paper we introduce a natural image prior that directly represents a Gaussian-smoothed version of the natural image distribution. We include our prior in a formulation of image restoration as a Bayes estimator that also allows us to solve noise-blind image restoration problems. We show that the gradient of our prior corresponds to the mean-shift vector on the natural image distribution. In addition, we learn the mean-shift vector field using denoising autoencoders, and use it in a gradient descent approach to perform Bayes risk minimization. We demonstrate competitive results for noise-blind deblurring, super-resolution, and demosaicing.Comment: NIPS 201

    BLADE: Filter Learning for General Purpose Computational Photography

    Full text link
    The Rapid and Accurate Image Super Resolution (RAISR) method of Romano, Isidoro, and Milanfar is a computationally efficient image upscaling method using a trained set of filters. We describe a generalization of RAISR, which we name Best Linear Adaptive Enhancement (BLADE). This approach is a trainable edge-adaptive filtering framework that is general, simple, computationally efficient, and useful for a wide range of problems in computational photography. We show applications to operations which may appear in a camera pipeline including denoising, demosaicing, and stylization

    Exploring Object Relation in Mean Teacher for Cross-Domain Detection

    Full text link
    Rendering synthetic data (e.g., 3D CAD-rendered images) to generate annotations for learning deep models in vision tasks has attracted increasing attention in recent years. However, simply applying the models learnt on synthetic images may lead to high generalization error on real images due to domain shift. To address this issue, recent progress in cross-domain recognition has featured the Mean Teacher, which directly simulates unsupervised domain adaptation as semi-supervised learning. The domain gap is thus naturally bridged with consistency regularization in a teacher-student scheme. In this work, we advance this Mean Teacher paradigm to be applicable for cross-domain detection. Specifically, we present Mean Teacher with Object Relations (MTOR) that novelly remolds Mean Teacher under the backbone of Faster R-CNN by integrating the object relations into the measure of consistency cost between teacher and student modules. Technically, MTOR firstly learns relational graphs that capture similarities between pairs of regions for teacher and student respectively. The whole architecture is then optimized with three consistency regularizations: 1) region-level consistency to align the region-level predictions between teacher and student, 2) inter-graph consistency for matching the graph structures between teacher and student, and 3) intra-graph consistency to enhance the similarity between regions of same class within the graph of student. Extensive experiments are conducted on the transfers across Cityscapes, Foggy Cityscapes, and SIM10k, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, we obtain a new record of single model: 22.8% of mAP on Syn2Real detection dataset.Comment: CVPR 2019; The codes and model of our MTOR are publicly available at: https://github.com/caiqi/mean-teacher-cross-domain-detectio

    Learning a Dilated Residual Network for SAR Image Despeckling

    Full text link
    In this paper, to break the limit of the traditional linear models for synthetic aperture radar (SAR) image despeckling, we propose a novel deep learning approach by learning a non-linear end-to-end mapping between the noisy and clean SAR images with a dilated residual network (SAR-DRN). SAR-DRN is based on dilated convolutions, which can both enlarge the receptive field and maintain the filter size and layer depth with a lightweight structure. In addition, skip connections and residual learning strategy are added to the despeckling model to maintain the image details and reduce the vanishing gradient problem. Compared with the traditional despeckling methods, the proposed method shows superior performance over the state-of-the-art methods on both quantitative and visual assessments, especially for strong speckle noise.Comment: 18 pages, 13 figures, 7 table
    • …
    corecore