343 research outputs found

    Adaptive Decision Feedback Reduced-Rank Equalization Based on Joint Iterative Optimization of Adaptive Estimation Algorithms for Multi-Antenna Systems

    Full text link
    This paper presents a novel adaptive reduced-rank multi-input-multi-output (MIMO) decision feedback equalization structure based on joint iterative optimization of adaptive estimators. The novel reduced-rank equalization structure consists of a joint iterative optimization of two equalization stages, namely, a projection matrix that performs dimensionality reduction and a reduced-rank estimator that retrieves the desired transmitted symbol. The proposed reduced-rank structure is followed by a decision feedback scheme that is responsible for cancelling the inter-antenna interference caused by the associated data streams. We describe least squares (LS) expressions for the design of the projection matrix and the reduced-rank estimator along with computationally efficient recursive least squares (RLS) adaptive estimation algorithms. Simulations for a MIMO equalization application show that the proposed scheme outperforms the state-of-the-art reduced-rank and the conventional estimation algorithms at about the same complexity.Comment: 6 figures. arXiv admin note: substantial text overlap with arXiv:1301.269

    Coordinate Tomlinson-Harashima Precoding Design for Overloaded Multi-user MIMO Systems

    Full text link
    Tomlinson-Harashima precoding (THP) is a nonlinear processing technique employed at the transmit side to implement the concept of dirty paper coding (DPC). The perform of THP, however, is restricted by the dimensionality constraint that the number of transmit antennas has to be greater or equal to the total number of receive antennas. In this paper, we propose an iterative coordinate THP algorithm for the scenarios in which the total number of receive antennas is larger than the number of transmit antennas. The proposed algorithm is implemented on two types of THP structures, the decentralized THP (dTHP) with diagonal weighted filters at the receivers of the users, and the centralized THP (cTHP) with diagonal weighted filter at the transmitter. Simulation results show that a much better bit error rate (BER) and sum-rate performances can be achieved by the proposed iterative coordinate THP compared to the previous linear art.Comment: 3 figures, 6 pages, ISWCS 2014. arXiv admin note: text overlap with arXiv:1401.475

    Resource Allocation and Interference Mitigation Techniques for Cooperative Multi-Antenna and Spread Spectrum Wireless Networks

    Full text link
    This chapter presents joint interference suppression and power allocation algorithms for DS-CDMA and MIMO networks with multiple hops and amplify-and-forward and decode-and-forward (DF) protocols. A scheme for joint allocation of power levels across the relays and linear interference suppression is proposed. We also consider another strategy for joint interference suppression and relay selection that maximizes the diversity available in the system. Simulations show that the proposed cross-layer optimization algorithms obtain significant gains in capacity and performance over existing schemes.Comment: 10 figures. arXiv admin note: substantial text overlap with arXiv:1301.009

    Detection and Estimation Algorithms in Massive MIMO Systems

    Full text link
    This book chapter reviews signal detection and parameter estimation techniques for multiuser multiple-antenna wireless systems with a very large number of antennas, known as massive multi-input multi-output (MIMO) systems. We consider both centralized antenna systems (CAS) and distributed antenna systems (DAS) architectures in which a large number of antenna elements are employed and focus on the uplink of a mobile cellular system. In particular, we focus on receive processing techniques that include signal detection and parameter estimation problems and discuss the specific needs of massive MIMO systems. Simulation results illustrate the performance of detection and estimation algorithms under several scenarios of interest. Key problems are discussed and future trends in massive MIMO systems are pointed out.Comment: 7 figures, 14 pages. arXiv admin note: substantial text overlap with arXiv:1310.728

    Low-complexity implementation of convex optimization-based phase retrieval

    Full text link
    Phase retrieval has important applications in optical imaging, communications and sensing. Lifting the dimensionality of the problem allows phase retrieval to be approximated as a convex optimization problem in a higher-dimensional space. Convex optimization-based phase retrieval has been shown to yield high accuracy, yet its low-complexity implementation has not been explored. In this paper, we study three fundamental approaches for its low-complexity implementation: the projected gradient method, the Nesterov accelerated gradient method, and the alternating direction method of multipliers (ADMM) method. We derive the corresponding estimation algorithms and evaluate their complexities. We compare their performance in the application area of direct-detection mode-division multiplexing. We demonstrate that they yield negligible estimation penalties (less than 0.2 dB for transmitter processing and less than 0.6 dB for receiver equalization) while yielding low computational cost, as their implementation complexities all scale quadratically in the number of unknown parameters. Among the three methods, ADMM achieves convergence after the smallest number of iterations

    Low-Complexity Robust Adaptive Beamforming Algorithms Based on Shrinkage for Mismatch Estimation

    Full text link
    In this paper, we propose low-complexity robust adaptive beamforming (RAB) techniques that based on shrinkage methods. The only prior knowledge required by the proposed algorithms are the angular sector in which the actual steering vector is located and the antenna array geometry. We firstly present a Low-Complexity Shrinkage-Based Mismatch Estimation (LOCSME) algorithm to estimate the desired signal steering vector mismatch, in which the interference-plus-noise covariance (INC) matrix is estimated with Oracle Approximating Shrinkage (OAS) method and the weights are computed with matrix inversions. We then develop low-cost stochastic gradient (SG) recursions to estimate the INC matrix and update the beamforming weights, resulting in the proposed LOCSME-SG algorithm. Simulation results show that both LOCSME and LOCSME-SG achieve very good output signal-to-interference-plus-noise ratio (SINR) compared to previously reported adaptive RAB algorithms.Comment: 8 pages, 2 figures, WSA. arXiv admin note: text overlap with arXiv:1311.233

    Adaptive Minimum BER Reduced-Rank Linear Detection for Massive MIMO Systems

    Full text link
    In this paper, we propose a novel adaptive reduced-rank strategy for very large multiuser multi-input multi-output (MIMO) systems. The proposed reduced-rank scheme is based on the concept of joint iterative optimization (JIO) of filters according to the minimization of the bit error rate (BER) cost function. The proposed optimization technique adjusts the weights of a projection matrix and a reduced-rank filter jointly. We develop stochastic gradient (SG) algorithms for their adaptive implementation and introduce a novel automatic rank selection method based on the BER criterion. Simulation results for multiuser MIMO systems show that the proposed adaptive algorithms significantly outperform existing schemes.Comment: 6 figures. arXiv admin note: substantial text overlap with arXiv:1302.413

    Study of Unique-Word Based GFDM Transmission Systems

    Full text link
    In this paper, we propose the use of a deterministic sequence, known as unique word (UW), instead of the cyclic prefix (CP) in generalized frequency division multiplexing (GFDM) systems. The UW consists of known sequences that, if not null, can be used advantageously for synchronization and channel estimation purposes. In addition, UW allows the application of a highly efficient linear minimum mean squared error (LMMSE) smoother for noise reduction at the receiver. To avoid the conditions of non-orthogonality caused by the insertion of the UW and performance degradation in time varying frequency-selective channels, we use frequency-shift offset quadrature amplitude modulation (FS-OQAM). We present a signal model of a UW-GFDM system considering a single and multiple UWs. We then develop an LMMSE receive filter for signal reception of the proposed UW-GFDM system. Simulations show that the proposed UW-GFDM system outperforms prior work.Comment: 5 pages, 4 figure

    Study of Set-Membership Kernel Adaptive Algorithms and Applications

    Full text link
    Adaptive algorithms based on kernel structures have been a topic of significant research over the past few years. The main advantage is that they form a family of universal approximators, offering an elegant solution to problems with nonlinearities. Nevertheless these methods deal with kernel expansions, creating a growing structure also known as dictionary, whose size depends on the number of new inputs. In this paper we derive the set-membership kernel-based normalized least-mean square (SM-NKLMS) algorithm, which is capable of limiting the size of the dictionary created in stationary environments. We also derive as an extension the set-membership kernelized affine projection (SM-KAP) algorithm. Finally several experiments are presented to compare the proposed SM-NKLMS and SM-KAP algorithms to the existing methods.Comment: 4 figures, 6 page

    Study of BEM-Type Channel Estimation Techniques for 5G Multicarrier Systems

    Full text link
    In this paper, we investigate channel estimation techniques for 5G multicarrier systems. Due to the characteristics of the 5G application scenarios, channel estimation techniques have been tested in Orthogonal Frequency Division Multiplexing (OFDM) and Generalized Frequency Division Multiplexing (GFDM) systems. The orthogonality between subcarriers in OFDM systems permits inserting and extracting pilots without interference. However, due to pulse shaping, subcarriers in GFDM are no longer orthogonal and interfere with each other. Due to such interference, the channel estimation for GFDM is not trivial. A robust and low-complexity channel estimator can be obtained by combining a minimum mean-square error (MMSE) regularization and the basis expansion model (BEM) approach. In this work, we develop a BEM-type channel estimator along with a strategy to obtain the covariance matrix of the BEM coefficients. Simulations show that the BEM-type channel estimation shows performance close to that of the linear MMSE (LMMSE), even though there is no need to know the channel power delay profile, and its complexity is low.Comment: 2 figures, 7 page
    • …
    corecore