23 research outputs found

    Reaction Null Space of a multibody system with applications in robotics

    Get PDF
    This paper provides an overview of implementation examples based on the Reaction Null Space formalism, developed initially to tackle the problem of satellite-base disturbance of a free-floating space robot, when the robot arm is activated. The method has been applied throughout the years to other unfixed-base systems, e.g. flexible-base and macro/mini robot systems, as well as to the balance control problem of humanoid robots. The paper also includes most recent results about complete dynamical decoupling of the end-link of a fixed-base robot, wherein the end-link is regarded as the unfixed-base. This interpretation is shown to be useful with regard to motion/force control scenarios. Respective implementation results are provided

    Facility for validating technologies for the autonomous space rendezvous and docking to uncooperative targets

    Get PDF
    We present the latest advancements in the air-bearing facility installed at La Sapienza’s GN Lab in the School of Aerospace Engineering. This facility has been utilized in recent times to validate robust control laws for simultaneous attitude control and vibration active damping. The instrumentation and testbed have been restructured and enhanced to enable simulations of close proximity operations. Relative pose determination, accomplished through visual navigation as either an auxiliary or standalone system, is the first building block. Leveraging the acquired knowledge, optimal guidance and control algorithms can be tested for contactless operations (e.g. on-orbit inspection), as well as berthing and docking tasks

    GNC architecture solutions for robust operations of a free-floating space manipulator via image based visual servoing

    Get PDF
    On-orbit servicing often requires the use of robotic arms, and a key asset in this kind of operations is autonomy. In this framework, the use of optical devices is a solution, already analyzed in many researches both for autonomous rendezvous and docking and for the evaluation of the control of the manipulator. In the present paper, simulations for assessing the controller performance are realized in a high-fidelity purposely developed software architecture, in which not only the selected 6 DOF space manipulator is modeled, but also a virtual camera, acquiring in the loop images of the target CAD model imported, is included in the GNC loop. This approach allows to emphasis several problems that would not emerge in simulations with images characterized by easily-identifiable, purposely-created markers. At the scope, a specific GNC architecture is developed, based on finite-state machine logic. According to this approach, two different Image Based Visual Servoing strategies are alternatively performed, commanding only linear or angular velocity of the camera, switching between the two control techniques when the “stack” or “divergence” condition is triggered. In this way a stable and robust accomplishment of the tasks is achieved for many configurations and for different target models

    Vision-based rotational control of an agile observation satellite

    Get PDF
    International audienceRecent Earth observation satellites are now equipped with new instrument that allows image feedback in real-time. Problematic such as ground target tracking, moving or not, can now be addressed by precisely controlling the satellite attitude. In this paper, we propose to consider this problem using a visual servoing approach. While focusing on the target, the control scheme has also to take into account the satellite motion induced by its orbit, Earth rotational velocities, potential target own motion, but also rotational velocities and accelerations constraints of the system. We show the efficiency of our system using both simulation (considering real Earth image) and experiments on a robot that replicates actual high resolution satellite constraints
    corecore