5 research outputs found

    A collision aware priority level medium access control protocol for underwater acoustic sensor networks

    Get PDF
    The Underwater Acoustic Sensor Network (UASN) plays a significant role in many application areas like surveillance, security, commercial and industrial applications. In UASN routing, propagation delay and collision are perennial problems due to data transfers from various sensor nodes to the Sink Node (SN) at the same time. In this paper, we propose a Collision Aware Priority Level mechanism based on Medium Access Control protocol (CAPL-MAC) for transferring data from the Sensor Head (SH) to the SN. In the proposed protocol, we use Parallel Competition Scheme (PCS) for high channel utilization and energy saving of battery. In each Competition Cycle (CC), the data packet produced by each SH in a different time slot can join in CC for data packet transmission in parallel with high channel utilization. In CAPL-MAC, each SH is assigned with a different Priority Level Number (PLN) during every CC. Instead of broadcasting, each SH sends its respective PLN to each SH with the help of the nearest SH to save battery energy. Based on the highest PLN, each SH communicates with SN without collision, and it will also reduce propagation delay as well as improve timing efficiency. Finally, Quality of Service is also improved. We adopt the single-layer approach with the handshaking protocol for communication. We carried out the simulation utilizing Aqua-Sim Network Simulator 2. The simulation results showed that the proposed CAPL-MAC protocol achieved the earlier stated performance rather than by existing protocols such as Competitive Transmission-MAC and Channel Aware Aloh

    Analysis of Security Attacks & Taxonomy in Underwater Wireless Sensor Networks

    Get PDF
    Abstract: Underwater Wireless Sensor Networks (UWSN) have gained more attention from researchers in recent years due to their advancement in marine monitoring, deployment of various applications, and ocean surveillance. The UWSN is an attractive field for both researchers and the industrial side. Due to the harsh underwater environment, own capabilities, open acoustic channel, it's also vulnerable to malicious attacks and threats. Attackers can easily take advantage of these characteristics to steal the data between the source and destination. Many review articles are addressed some of the security attacks and Taxonomy of the Underwater Wireless Sensor Networks. In this study, we have briefly addressed the Taxonomy of the UWSNs from the most recent research articles related to the well-known research databases. This paper also discussed the security threats on each layer of the Underwater Wireless sensor networks. This study will help the researcher’s design the routing protocols to cover the known security threats and help industries manufacture the devices to observe these threats and security issues

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Adaptive RTO for Handshaking-based MAC Protocols in Underwater Acoustic Networks

    No full text
    International audienceUnderwater acoustic networks (UANs) are attracting interest in recent decades.The unique characteristics of the underwater acoustic channel, such as long propagationdelay, delay variance, and high bit error rate, present challenges for themedium access control (MAC) protocol design in UANs. Most existing mediumaccess control protocols ignore the delay variance which prevents the accurateestimation of round trip time (RTT). The expected RTT value can be used to computethe Retransmission Time-Out (RTO) or the waiting time in MAC. The estimationof RTT is also meaningful for Automatic Repeat re-Quest (ARQ) schemebecause the system should ensure reliable data transmissions in the presence ofhigh bit error rate in the underwater acoustic channel. By analyzing the impact ofRTO on throughput under the effect of delay variance, we conclude that the fixedRTO is inefficient and RTO should be adaptively set to improve the throughput.We present a novel approach of predicting the RTT using a Bayesian dynamiclinear model, and then adjust RTO adaptively according to the predicted values.Simulation results show that the predicted values can adapt quickly to the sample RTT values. Under the effect of RTT fluctuations, the Bayesian algorithm offersperformance gains in terms of throughput and prediction performance, comparingwith Karn’s algorithm. Our study highlights the value of predicting the RTT usingBayesian approach in underwater acoustic networks
    corecore