897 research outputs found

    Adaptive computed reference computed torque control of flexible manipulators

    Get PDF

    (Adaptive) computed torque control of (flexible) robot systems

    Get PDF

    A family of asymptotically stable control laws for flexible robots based on a passivity approach

    Get PDF
    A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed-loop input/output stability which is then related to the internal state space stability through the stabilizability and detectability condition. Applications of these results include fully actuated robots, flexible joint robots, and robots with link flexibility

    Design of an Integral Suboptimal Second-Order Sliding Mode Controller for the Robust Motion Control of Robot Manipulators

    Get PDF
    The formulation of an integral suboptimal second-order sliding mode ((ISSOSM) control algorithm, oriented to solve motion control problems for robot manipulators, is presented in this paper. The proposed algorithm is designed so that the so-called reaching phase, normally present in the evolution of a system controlled via the sliding mode approach, is reduced to a minimum. This fact makes the algorithm more suitable to be applied to a real industrial robot, since it enhances its robustness, by extending it also to time intervals during which the classical sliding mode is not enforced. Moreover, since the algorithm generates second-order sliding modes, while the model of the controlled electromechanical system has a relative degree equal to one, the control action actually fed into the plant is continuous, which provides a positive chattering alleviation effect. The assessment of the proposal has been carried out by experimentally testing it on a COMAU SMART3-S2 anthropomorphic industrial robot manipulator. The satisfactory experimental results, also compared with those obtained with a standard proportional-derivative controller and with the original suboptimal algorithm, confirm that the new algorithm can actually be used in an industrial context

    Control of Flexible Manipulator Robots Based on Dynamic Confined Space of Velocities: Dynamic Programming Approach

    Get PDF
    Linear Parameter Varying models-based Model Predictive Control (LPV-MPC) has stood out in manipulator robots because it presents well-rejection to dynamic uncertainties in flexible joints. However, it has become too weak when the MPC's optimization problem does not include kinematic constraints-based conditions. This paper uses dynamic confined space of velocities (DCSV) to include these conditions as a recursive polytopic constraint, guaranteeing optimal dependency on a simplex scheduling parameter. To this end, the local frame's velocities and torque/force preload of joints (related to violation of kinematic constraints) are associated with different time scale dynamics such that DCSV correlates them as a polytope. So, a classical LPV-MPC will be updated using a dynamic programming approach according to the DCSV-based polytope. As a result, one lemma about DCSV-based recursive polytope and a five-step procedure for two decoupled close-loop schemes with different time scales compose the LPV-MPC proposed method. Numerical validation shows that even for relevant flexibility situations, trajectory tracking performance is improved by tuning finite horizons and optimization problem constraints regarding DCSV's behavior

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Flat systems, equivalence and trajectory generation

    Get PDF
    Flat systems, an important subclass of nonlinear control systems introduced via differential-algebraic methods, are defined in a differential geometric framework. We utilize the infinite dimensional geometry developed by Vinogradov and coworkers: a control system is a diffiety, or more precisely, an ordinary diffiety, i.e. a smooth infinite-dimensional manifold equipped with a privileged vector field. After recalling the definition of a Lie-Backlund mapping, we say that two systems are equivalent if they are related by a Lie-Backlund isomorphism. Flat systems are those systems which are equivalent to a controllable linear one. The interest of such an abstract setting relies mainly on the fact that the above system equivalence is interpreted in terms of endogenous dynamic feedback. The presentation is as elementary as possible and illustrated by the VTOL aircraft
    • ā€¦
    corecore