43 research outputs found

    Direct Torque Control of Permanent Magnet Synchronous Motors

    Get PDF

    Real-Time Fault Diagnosis of Permanent Magnet Synchronous Motor and Drive System

    Get PDF
    Permanent Magnet Synchronous Motors (PMSMs) have gained massive popularity in industrial applications such as electric vehicles, robotic systems, and offshore industries due to their merits of efficiency, power density, and controllability. PMSMs working in such applications are constantly exposed to electrical, thermal, and mechanical stresses, resulting in different faults such as electrical, mechanical, and magnetic faults. These faults may lead to efficiency reduction, excessive heat, and even catastrophic system breakdown if not diagnosed in time. Therefore, developing methods for real-time condition monitoring and detection of faults at early stages can substantially lower maintenance costs, downtime of the system, and productivity loss. In this dissertation, condition monitoring and detection of the three most common faults in PMSMs and drive systems, namely inter-turn short circuit, demagnetization, and sensor faults are studied. First, modeling and detection of inter-turn short circuit fault is investigated by proposing one FEM-based model, and one analytical model. In these two models, efforts are made to extract either fault indicators or adjustments for being used in combination with more complex detection methods. Subsequently, a systematic fault diagnosis of PMSM and drive system containing multiple faults based on structural analysis is presented. After implementing structural analysis and obtaining the redundant part of the PMSM and drive system, several sequential residuals are designed and implemented based on the fault terms that appear in each of the redundant sets to detect and isolate the studied faults which are applied at different time intervals. Finally, real-time detection of faults in PMSMs and drive systems by using a powerful statistical signal-processing detector such as generalized likelihood ratio test is investigated. By using generalized likelihood ratio test, a threshold was obtained based on choosing the probability of a false alarm and the probability of detection for each detector based on which decision was made to indicate the presence of the studied faults. To improve the detection and recovery delay time, a recursive cumulative GLRT with an adaptive threshold algorithm is implemented. As a result, a more processed fault indicator is achieved by this recursive algorithm that is compared to an arbitrary threshold, and a decision is made in real-time performance. The experimental results show that the statistical detector is able to efficiently detect all the unexpected faults in the presence of unknown noise and without experiencing any false alarm, proving the effectiveness of this diagnostic approach.publishedVersio

    Soft-computing based intelligent adaptive control design of complex dynamic systems

    Get PDF

    Innovative solutions for converters and motor drives oriented to smart cities and communities

    Get PDF
    Alcune aree definite dall'Unione Europea nel contesto delle smart cities and communities si fondono pienamente con i motori elettrici come, per esempio, l'efficienza energetica, le tecnologie a basse emissioni di carbonio e la mobilità. I motori elettrici sono utilizzati in molteplici applicazioni industriali e non, consumando tra il 43% e il 46% dell'energia elettrica prodotta su scala mondiale.Nonostante alcune applicazioni siano contraddistinte da dinamiche elevate, come manipolatori o macchine utensili, la maggior parte di esse sono caratterizzate da basse dinamiche in quanto facenti parte di processi industriali, per esempio pompe, compressori, ventilatori o nastri trasportatori. Si è stimato che il costo dell'intero ciclo di vita di un motore elettrico è ascrivibile per il 92% - 95% all'energia consumata, il che indurrebbe un tempo di ritorno dall'investimento per installazione di un azionamento elettrico minore di due anni. Nonostante il notevole risparmio economico e ambientale ottenibile, è piuttosto sorprendente apprendere che solo il 10% - 15% di tutti i motori industriali siano controllati da azionamenti elettrici. Per quanto riguarda le diverse tecnologie di motori elettrici, i motori sincroni a riluttanza stanno ricevendo una notevole attenzione sia da ricercatori industriali che accademici. Il crescente interesse è principalmente motivato dalle loro intrinseche caratteristiche quali l'alta efficienza, il basso costo e il basso impatto ambientale dovuto alla mancanza di magneti permanenti. Per di più, le loro caratteristiche soddisfano appieno i requisiti imposti dalle smart cities and communities e sono adatti per tutte le applicazione, caratterizzate da una bassa dinamica, viste sopra. Per questi motivi, questa tecnologia di motori può essere posta al centro dei processi di rinnovamento di quelle applicazioni. Vi è ampio consenso sul potenziale incremento delle vendite sia di azionamenti elettrici che di motori sincroni a riluttanza. I motori sincroni a riluttanza sono soggetti a una marcata saturazione magnetica, rendendo i classici modelli a parametri concentrati poco adatti. La prima parte di questa tesi riguarda lo sviluppo di un innovativo modello magnetico per motori anisotropi. Si basa su una rete neurale non tradizionale, chiamata Radial Basis Function. La sua proprietà locale rende questo tipo di rete neurale particolarmente adatta ad un addestramento durante il normale funzionamento del motore. Si propone una completa procedura di design e addestramento della stessa. In particolare vengono fatte alcune considerazione le quali permettono di definire a priori alcuni parametri della rete neurale rendendo il problema di addestramento lineare. Si descrivono due algoritmi di addestramento, il primo veloce ma computazionalmente dispendioso perciò adatto per un'implementazione offline mentre il secondo idoneo ad un addestramento online. Infine, per concludere l'identificazione parametrica del motore, si propone uno schema basato sull'iniezione di una corrente continua il quale permette di stimare la resistenza di statore indipendentemente da tutti gli altri parametri della macchina. L'indipendenza parametrica permette un notevolmente miglioramento nell'accuratezza di stima del modello magnetico ottenuto con la rete neurale. La seconda parte di questa tesi, invece, tratta il controllo del motore e come sia possibile migliorarne le performance utilizzando il modello identificato. Innanzitutto, per incrementarne l'efficienza si presenta un innovativo metodo per trovare la curva a massima coppia per corrente. La tecnica proposta lavora in stretta simbiosi con l'identificazione del modello magnetico in quanto è in grado di capire dove si trova la curva cercata rispetto all'attuale punto di lavoro sfruttando la stima locale dei flussi magnetici. Identificata la direzione di movimento, l'azionamento continuamente muove il punto di lavoro coerentemente. Infine, si propongono tre diversi controlli di corrente pensati per gestire un motore fortemente non lineare, tutti basati sul modello stimato. Il primo è un controllore proporzionale-integrale nel quale i parametri vengono modificati al variare del punto di lavoro con lo scopo di mantenere la dinamica della corrente di motore costante. Il secondo è anch'esso basato su un controllore proporzionale-integrale ma a guadagni costanti accoppiato ad un'azione di feed--forward la quale compensa tutte le non linearità presenti nella mappa magnetica. Infine, il terzo è un controllo predittivo il quale determina direttamente la posizione degli switch tali per cui la funzione di costo è minimizzata. All'interno del controllo, è inserito un vincolo sulla corrente massima e si utilizza un particolare algoritmo per ottenere un lungo orizzonte di predizione. Tutti i metodi presentati nella tesi sono stata verificati attraverso dettagliate simulazioni e prove sperimentali, eccezione fatta per il controllo predittivo il quale è stato testato attraverso simulazioni

    Applications of Power Electronics:Volume 1

    Get PDF

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine

    Artificial Intelligence Supported EV Electric Powertrain for Safety Improvement

    Get PDF
    As an environmentally friendly transport option, electric vehicles (EVs) are endowed with the characteristics of low fossil energy consumption and low pollutant emissions. In today's growing market share of EVs, the safety and reliability of the powertrain system will be directly related to the safety of human life. Reliability problems of EV powertrains may occur in any power electronic (PE) component and mechanical part, both sudden and cumulative. These faults in different locations and degrees will continuously threaten the life of drivers and pedestrians, bringing irreparable consequences. Therefore, monitoring and predicting the real-time health status of EV powertrain is a high-priority, arduous and challenging task. The purposes of this study are to develop AI-supported effective safety improvement techniques for EV powertrains. In the first place, a literature review is carried out to illustrate the up-to-date AI applications for solving condition monitoring and fault detection issues of EV powertrains, where recent case studies between conventional methods and AI-based methods in EV applications are compared and analysed. On this ground this study, then, focuses on the theories and techniques concerning this topic so as to tackle different challenges encountered in the actual applications. In detail, first, as for diagnosing the bearing system in the earlier fault period, a novel inferable deep distilled attention network is designed to detect multiple bearing faults. Second, a deep learning and simulation driven approach that combines the domain-adversarial neural network and the lumped-parameter thermal network (LPTN) is proposed for achieve IPMSM permanent magnet temperature estimation work. Finally, to ensure the use safety of the IGBT module, deep learning -based IGBT modules’ double pulse test (DPT) efficiency enhancement is proposed and achieved via multimodal fusion networks and graph convolution networks

    Mathematical Models for the Design of Electrical Machines

    Get PDF
    This book is a comprehensive set of articles reflecting the latest advances and developments in mathematical modeling and the design of electrical machines for different applications. The main models discussed are based on the: i) Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method and the Fourier’s series in 2-D or 3-D with a quasi-Cartesian or polar coordinate system); ii) electrical, thermal and magnetic equivalent circuit; iii) hybrid model. In these different papers, the numerical method and the experimental tests have been used as comparisons or validations

    Artificial Intelligence-based Technique for Fault Detection and Diagnosis of EV Motors: A Review

    Get PDF
    The motor drive system plays a significant role in the safety of electric vehicles as a bridge for power transmission. Meanwhile, to enhance the efficiency and stability of the drive system, more and more studies based on AI technology are devoted to the fault detection and diagnosis of the motor drive system. This paper reviews the application of AI techniques in motor fault detection and diagnosis in recent years. AI-based FDD is divided into two main steps: feature extraction and fault classification. The application of different signal processing methods in feature extraction is discussed. In particular, the application of traditional machine learning and deep learning algorithms for fault classification is presented in detail. In addition, the characteristics of all techniques reviewed are summarized. Finally, the latest developments, research gaps and future challenges in fault monitoring and diagnosis of motor faults are discussed
    corecore