15,743 research outputs found

    Buffer Sizing for 802.11 Based Networks

    Get PDF
    We consider the sizing of network buffers in 802.11 based networks. Wireless networks face a number of fundamental issues that do not arise in wired networks. We demonstrate that the use of fixed size buffers in 802.11 networks inevitably leads to either undesirable channel under-utilization or unnecessary high delays. We present two novel dynamic buffer sizing algorithms that achieve high throughput while maintaining low delay across a wide range of network conditions. Experimental measurements demonstrate the utility of the proposed algorithms in a production WLAN and a lab testbed.Comment: 14 pages, to appear on IEEE/ACM Transactions on Networkin

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users

    Modeling the interaction between TCP and Rate Adaptation

    Get PDF
    In this paper, we model and investigate the interaction between the TCP protocol and rate adaptation at intermediate routers. Rate adaptation aims at saving energy by controlling the offered capacity of links and adapting it to the amount of traffic. However, when TCP is used at the transport layer, the control loop of rate adaptation and one of the TCP congestion control mechanism might interact and disturb each other, compromising throughput and Quality of Service (QoS). Our investigation is lead through mathematical modeling consisting in depicting the behavior of TCP and of rate adaption through a set of Delay Differential Equations (DDEs). The model is validated against simulation results and it is shown to be accurate. The results of the sensitivity analysis of the system performance to control parameters show that rate adaptation can be effective but a careful parameter setting is needed to avoid undesired disruptive interaction among controllers at different levels, that impair QoS
    corecore