122 research outputs found

    Newton acceleration on manifolds identified by proximal-gradient methods

    Full text link
    Proximal methods are known to identify the underlying substructure of nonsmooth optimization problems. Even more, in many interesting situations, the output of a proximity operator comes with its structure at no additional cost, and convergence is improved once it matches the structure of a minimizer. However, it is impossible in general to know whether the current structure is final or not; such highly valuable information has to be exploited adaptively. To do so, we place ourselves in the case where a proximal gradient method can identify manifolds of differentiability of the nonsmooth objective. Leveraging this manifold identification, we show that Riemannian Newton-like methods can be intertwined with the proximal gradient steps to drastically boost the convergence. We prove the superlinear convergence of the algorithm when solving some nondegenerated nonsmooth nonconvex optimization problems. We provide numerical illustrations on optimization problems regularized by â„“1\ell_1-norm or trace-norm

    A Riemannian View on Shape Optimization

    Full text link
    Shape optimization based on the shape calculus is numerically mostly performed by means of steepest descent methods. This paper provides a novel framework to analyze shape-Newton optimization methods by exploiting a Riemannian perspective. A Riemannian shape Hessian is defined yielding often sought properties like symmetry and quadratic convergence for Newton optimization methods.Comment: 15 pages, 1 figure, 1 table. Forschungsbericht / Universit\"at Trier, Mathematik, Informatik 2012,

    Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence

    Full text link
    In this paper, we propose a new {\it \underline{R}ecursive} {\it \underline{I}mportance} {\it \underline{S}ketching} algorithm for {\it \underline{R}ank} constrained least squares {\it \underline{O}ptimization} (RISRO). As its name suggests, the algorithm is based on a new sketching framework, recursive importance sketching. Several existing algorithms in the literature can be reinterpreted under the new sketching framework and RISRO offers clear advantages over them. RISRO is easy to implement and computationally efficient, where the core procedure in each iteration is only solving a dimension reduced least squares problem. Different from numerous existing algorithms with locally geometric convergence rate, we establish the local quadratic-linear and quadratic rate of convergence for RISRO under some mild conditions. In addition, we discover a deep connection of RISRO to Riemannian manifold optimization on fixed rank matrices. The effectiveness of RISRO is demonstrated in two applications in machine learning and statistics: low-rank matrix trace regression and phase retrieval. Simulation studies demonstrate the superior numerical performance of RISRO
    • …
    corecore