226 research outputs found

    Energy-efficient adaptive wireless network design

    Get PDF
    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data link layer protocol for wireless networks that provides quality of service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations are necessary to achieve energy efficiency and an acceptable quality of service. The paper provides a review of ideas and techniques relevant to the design of an energy efficient adaptive wireless networ

    QoS Framework for wireless networks

    Get PDF
    This paper presents a work in progress about a cross-layer approach to support Quality of Service for wireless multimedia applications, building a suitable framework over the top of the heterogeneous wireless MACs. It lets to enhance the existing QoS support provided by standard MAC protocols and it uses the contract model to guarantee QoS, taking into account the applications requests. It negotiates dynamically Application Level Contracts which will be translated seamlessly in Resource Level Contracts for the underlying network services from which it receives the feedback to adjust the scheduling algorithms and policies to provide soft guarantees. The framework comprises QoS Manager, Admission Control, Enhanced Scheduler and Feedback System. The QoS manager component is a middleware able to dynamically manage available resources under different load conditions in a transparent manner to application level

    Testing a Cloud Provider Network for Hybrid P2P and Cloud Streaming Architectures

    Get PDF
    The number of online real-time streaming services deployed over network topologies like P2P or centralized ones has remarkably increased in the recent years. This has revealed the lack of networks that are well prepared to respond to this kind of traffic. A hybrid distribution network can be an efficient solution for real-time streaming services. This paper contains the experimental results of streaming distribution in a hybrid architecture that consist of mixed connections among P2P and Cloud nodes that can interoperate together. We have chosen to represent the P2P nodes as Planet Lab machines over the world and the cloud nodes using a Cloud provider's network. First we present an experimental validation of the Cloud infrastructure's ability to distribute streaming sessions with respect to some key streaming QoS parameters: jitter, throughput and packet losses. Next we show the results obtained from different test scenarios, when a hybrid distribution network is used. The scenarios measure the improvement of the multimedia QoS parameters, when nodes in the streaming distribution network (located in different continents) are gradually moved into the Cloud provider infrastructure. The overall conclusion is that the QoS of a streaming service can be efficiently improved, unlike in traditional P2P systems and CDN, by deploying a hybrid streaming architecture. This enhancement can be obtained by strategic placing of certain distribution network nodes into the Cloud provider infrastructure, taking advantage of the reduced packet loss and low latency that exists among its datacenters

    Video Conferencing Evaluation Considering Scalable Video Coding and SDN Network

    Get PDF
    Video conferencing is very common nowadays, and it may contemplate heterogenous devices (e.g., smartphones, notebooks, game consoles) and networks in the same session. Developing video conferencing systems for this myriad of devices with different capabilities requires special attention from system designer. Scalable video coding (SVC) is a prominent option to mitigate this heterogeneity issue, but traditional Internet protocol (IP) networks may not fully benefit from such a technology. In contrast, software-defined networking (SDN) may allow better utilization of SVC and improvements on video conferencing components. This paper evaluates the performance of video conferencing systems adopting SVC, SDN and ordinary IP networks, taking into account throughput, delay and peak signal-to-noise ratio (PSNR) as the metrics of interest. The experiments are based on Mininet framework and distinct network infrastructures are also considered. Results indicate SDN with SVC may deliver better video quality with reduced delay and increased throughput

    Video streaming with quality adaption using collaborative active grid networks

    Get PDF
    Due to the services and demands of the end users, Distributed Computing (Grid Technology, Web Services, and Peer-to-Peer) has been developedrapidJy in thelastyears. Theconvergence of these architectures has been possible using mechanisms such as Collaborative work and Resources Sharing. Grid computing is a platform to enable flexible, secure, controlled, scalable, ubiquitous and heterogeneous services. On the other hand, Video Streaming applications demand a greater deployment over connected Internet users. The present work uses the Acti ve Grid technology as a fundamental platform to give a solution of multimediacontentrecovery. This solution takes into account the following key concepts: collaborative work, multi-source recovery and adapti ve quality. A new archi tecture is designed to deliver video content over a Grid Network. The acti ve and passi ve roles of the nodes are important to guarantee a high quality and efficiency for the video streaming system. The acti ve sender nodes are the content suppliers, while the passive sender nodes wiU perform the backup functions, based on global resource control policies. The aim of the backup node is minirnize the time to restore the systemin caseoffailures. In this way, all participant peers work in a collaborati ve manner following a mul ti -source recovery scheme. Furthermore, Video La yered Encoding is used to manage the video data in a high scalable way, di viding the video in multiple layers. This video codification scheme enables thequality adaptation according to the availability of system resources. In addition, a buffer by sender peer and by layer is needed for an effecti ve control ofthe video retrieve. The QoS will fit considering the state of each buffer and the measurement tools provide by the Acti ve Grid on the network nodes. Ke ywords: Peer -to-Peer Grid Architecture, Services for Active Grids, Streaming Media, Layered Coding, Quality Adaptation, CoUaborative Work.Peer Reviewe

    Video streaming with quality adaption using collaborative active grid networks

    Get PDF
    Due to the services and demands of the end users, Distributed Computing (Grid Technology, Web Services, and Peer-to-Peer) has been developedrapidJy in thelastyears. Theconvergence of these architectures has been possible using mechanisms such as Collaborative work and Resources Sharing. Grid computing is a platform to enable flexible, secure, controlled, scalable, ubiquitous and heterogeneous services. On the other hand, Video Streaming applications demand a greater deployment over connected Internet users. The present work uses the Acti ve Grid technology as a fundamental platform to give a solution of multimediacontentrecovery. This solution takes into account the following key concepts: collaborative work, multi-source recovery and adapti ve quality. A new archi tecture is designed to deliver video content over a Grid Network. The acti ve and passi ve roles of the nodes are important to guarantee a high quality and efficiency for the video streaming system. The acti ve sender nodes are the content suppliers, while the passive sender nodes wiU perform the backup functions, based on global resource control policies. The aim of the backup node is minirnize the time to restore the systemin caseoffailures. In this way, all participant peers work in a collaborati ve manner following a mul ti -source recovery scheme. Furthermore, Video La yered Encoding is used to manage the video data in a high scalable way, di viding the video in multiple layers. This video codification scheme enables thequality adaptation according to the availability of system resources. In addition, a buffer by sender peer and by layer is needed for an effecti ve control ofthe video retrieve. The QoS will fit considering the state of each buffer and the measurement tools provide by the Acti ve Grid on the network nodes. Ke ywords: Peer -to-Peer Grid Architecture, Services for Active Grids, Streaming Media, Layered Coding, Quality Adaptation, CoUaborative Work.Peer Reviewe

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Video Conference as a tool for Higher Education

    Get PDF
    The book describes the activities of the consortium member institutions in the framework of the TEMPUS IV Joint Project ViCES - Video Conferencing Educational Services (144650-TEMPUS-2008-IT-JPGR). In order to provide the basis for the development of a distance learning environment based on video conferencing systems and develop a blended learning courses methodology, the TEMPUS Project VICES (2009-2012) was launched in 2009. This publication collects the conclusion of the project and it reports the main outcomes together with the approach followed by the different partners towards the achievement of the project's goal. The book includes several contributions focussed on specific topics related to videoconferencing services, namely how to enable such services in educational contexts so that, the installation and deployment of videoconferencing systems could be conceived an integral part of virtual open campuses
    • …
    corecore