628 research outputs found

    An adaptive admission control and load balancing algorithm for a QoS-aware Web system

    Get PDF
    The main objective of this thesis focuses on the design of an adaptive algorithm for admission control and content-aware load balancing for Web traffic. In order to set the context of this work, several reviews are included to introduce the reader in the background concepts of Web load balancing, admission control and the Internet traffic characteristics that may affect the good performance of a Web site. The admission control and load balancing algorithm described in this thesis manages the distribution of traffic to a Web cluster based on QoS requirements. The goal of the proposed scheduling algorithm is to avoid situations in which the system provides a lower performance than desired due to servers' congestion. This is achieved through the implementation of forecasting calculations. Obviously, the increase of the computational cost of the algorithm results in some overhead. This is the reason for designing an adaptive time slot scheduling that sets the execution times of the algorithm depending on the burstiness that is arriving to the system. Therefore, the predictive scheduling algorithm proposed includes an adaptive overhead control. Once defined the scheduling of the algorithm, we design the admission control module based on throughput predictions. The results obtained by several throughput predictors are compared and one of them is selected to be included in our algorithm. The utilisation level that the Web servers will have in the near future is also forecasted and reserved for each service depending on the Service Level Agreement (SLA). Our load balancing strategy is based on a classical policy. Hence, a comparison of several classical load balancing policies is also included in order to know which of them better fits our algorithm. A simulation model has been designed to obtain the results presented in this thesis

    QoS Contract Negotiation in Distributed Component-Based Software

    Get PDF
    Currently, several mature and commercial component models (for e.g. EJB, .NET, COM+) exist on the market. These technologies were designed largely for applications with business-oriented non-functional requirements such as data persistence, confidentiality, and transactional support. They provide only limited support for the development of components and applications with non-functional properties (NFPs) like QoS (e.g. throughput, response time). The integration of QoS into component infrastructure requires among other things the support of components’ QoS contract specification, negotiation, adaptation, etc. This thesis focuses on contract negotiation. For applications in which the consideration of non-functional properties (NFPs) is essential (e.g. Video-on-Demand, eCommerce), a component-based solution demands the appropriate composition of the QoS contracts specified at the different ports of the collaborating components. The ports must be properly connected so that the QoS level required by one is matched by the QoS level provided by the other. Generally, QoS contracts of components depend on run-time resources (e.g. network bandwidth, CPU time) or quality attributes to be established dynamically and are usually specified in multiple QoS-Profiles. QoS contract negotiation enables the selection of appropriate concrete QoS contracts between collaborating components. In our approach, the component containers perform the contract negotiation at run-time. This thesis addresses the QoS contract negotiation problem by first modelling it as a constraint satisfaction optimization problem (CSOP). As a basis for this modelling, the provided and required QoS as well as resource demand are specified at the component level. The notion of utility is applied to select a good solution according to some negotiation goal (e.g. user’s satisfaction). We argue that performing QoS contract negotiation in multiple phases simplifies the negotiation process and makes it more efficient. Based on such classification, the thesis presents heuristic algorithms that comprise coarse-grained and fine-grained negotiations for collaborating components deployed in distributed nodes in the following scenarios: (i) single-client - single-server, (ii) multiple-clients, and (iii) multi-tier scenarios. To motivate the problem as well as to validate the proposed approach, we have examined three componentized distributed applications. These are: (i) video streaming, (ii) stock quote, and (iii) billing (to evaluate certain security properties). An experiment has been conducted to specify the QoS contracts of the collaborating components in one of the applications we studied. In a run-time system that implements our algorithm, we simulated different behaviors concerning: (i) user’s QoS requirements and preferences, (ii) resource availability conditions concerning the client, server, and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating components. Under various conditions, the outcome of the negotiation confirms the claim we made with regard to obtaining a good solution

    QoS Contract Negotiation in Distributed Component-Based Software

    Get PDF
    Currently, several mature and commercial component models (for e.g. EJB, .NET, COM+) exist on the market. These technologies were designed largely for applications with business-oriented non-functional requirements such as data persistence, confidentiality, and transactional support. They provide only limited support for the development of components and applications with non-functional properties (NFPs) like QoS (e.g. throughput, response time). The integration of QoS into component infrastructure requires among other things the support of components’ QoS contract specification, negotiation, adaptation, etc. This thesis focuses on contract negotiation. For applications in which the consideration of non-functional properties (NFPs) is essential (e.g. Video-on-Demand, eCommerce), a component-based solution demands the appropriate composition of the QoS contracts specified at the different ports of the collaborating components. The ports must be properly connected so that the QoS level required by one is matched by the QoS level provided by the other. Generally, QoS contracts of components depend on run-time resources (e.g. network bandwidth, CPU time) or quality attributes to be established dynamically and are usually specified in multiple QoS-Profiles. QoS contract negotiation enables the selection of appropriate concrete QoS contracts between collaborating components. In our approach, the component containers perform the contract negotiation at run-time. This thesis addresses the QoS contract negotiation problem by first modelling it as a constraint satisfaction optimization problem (CSOP). As a basis for this modelling, the provided and required QoS as well as resource demand are specified at the component level. The notion of utility is applied to select a good solution according to some negotiation goal (e.g. user’s satisfaction). We argue that performing QoS contract negotiation in multiple phases simplifies the negotiation process and makes it more efficient. Based on such classification, the thesis presents heuristic algorithms that comprise coarse-grained and fine-grained negotiations for collaborating components deployed in distributed nodes in the following scenarios: (i) single-client - single-server, (ii) multiple-clients, and (iii) multi-tier scenarios. To motivate the problem as well as to validate the proposed approach, we have examined three componentized distributed applications. These are: (i) video streaming, (ii) stock quote, and (iii) billing (to evaluate certain security properties). An experiment has been conducted to specify the QoS contracts of the collaborating components in one of the applications we studied. In a run-time system that implements our algorithm, we simulated different behaviors concerning: (i) user’s QoS requirements and preferences, (ii) resource availability conditions concerning the client, server, and network bandwidth, and (iii) the specified QoS-Profiles of the collaborating components. Under various conditions, the outcome of the negotiation confirms the claim we made with regard to obtaining a good solution

    Middleware for Internet of Things: A Survey

    Get PDF

    The SATIN component system - a metamodel for engineering adaptable mobile systems

    Get PDF
    Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular, smaller, and more capable. We argue that mobile systems should be able to adapt to changing requirements and execution environments. Adaptation requires the ability-to reconfigure the deployed code base on a mobile device. Such reconfiguration is considerably simplified if mobile applications are component-oriented rather than monolithic blocks of code. We present the SATIN (system adaptation targeting integrated networks) component metamodel, a lightweight local component metamodel that offers the flexible use of logical mobility primitives to reconfigure the software system by dynamically transferring code. The metamodel is implemented in the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives defined in the metamodel to reconfigure both itself and applications that it hosts. We demonstrate the suitability of SATIN in terms of lightweightedness, flexibility, and reusability for the creation of adaptable mobile systems by using it to implement, port, and evaluate a number of existing and new applications, including an active network platform developed for satellite communication at the European space agency. These applications exhibit different aspects of adaptation and demonstrate the flexibility of the approach and the advantages gaine

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    • …
    corecore