1,850 research outputs found

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Low Cost 3D Flow Estimation in Medical Ultrasound

    Get PDF
    abstract: Medical ultrasound imaging is widely used today because of it being non-invasive and cost-effective. Flow estimation helps in accurate diagnosis of vascular diseases and adds an important dimension to medical ultrasound imaging. Traditionally flow estimation is done using Doppler-based methods which only estimate velocity in the beam direction. Thus when blood vessels are close to being orthogonal to the beam direction, there are large errors in the estimation results. In this dissertation, a low cost blood flow estimation method that does not have the angle dependency of Doppler-based methods, is presented. First, a velocity estimator based on speckle tracking and synthetic lateral phase is proposed for clutter-free blood flow. Speckle tracking is based on kernel matching and does not have any angle dependency. While velocity estimation in axial dimension is accurate, lateral velocity estimation is challenging due to reduced resolution and lack of phase information. This work presents a two tiered method which estimates the pixel level movement using sum-of-absolute difference, and then estimates the sub-pixel level using synthetic phase information in the lateral dimension. Such a method achieves highly accurate velocity estimation with reduced complexity compared to a cross correlation based method. The average bias of the proposed estimation method is less than 2% for plug flow and less than 7% for parabolic flow. Blood is always accompanied by clutter which originates from vessel wall and surrounding tissues. As magnitude of the blood signal is usually 40-60 dB lower than magnitude of the clutter signal, clutter filtering is necessary before blood flow estimation. Clutter filters utilize the high magnitude and low frequency features of clutter signal to effectively remove them from the compound (blood + clutter) signal. Instead of low complexity FIR filter or high complexity SVD-based filters, here a power/subspace iteration based method is proposed for clutter filtering. Excellent clutter filtering performance is achieved for both slow and fast moving clutters with lower complexity compared to SVD-based filters. For instance, use of the proposed method results in the bias being less than 8% and standard deviation being less than 12% for fast moving clutter when the beam-to-flow-angle is 90o90^o. Third, a flow rate estimation method based on kernel power weighting is proposed. As the velocity estimator is a kernel-based method, the estimation accuracy degrades near the vessel boundary. In order to account for kernels that are not fully inside the vessel, fractional weights are given to these kernels based on their signal power. The proposed method achieves excellent flow rate estimation results with less than 8% bias for both slow and fast moving clutters. The performance of the velocity estimator is also evaluated for challenging models. A 2D version of our two-tiered method is able to accurately estimate velocity vectors in a spinning disk as well as in a carotid bifurcation model, both of which are part of the synthetic aperture vector flow imaging (SA-VFI) challenge of 2018. In fact, the proposed method ranked 3rd in the challenge for testing dataset with carotid bifurcation. The flow estimation method is also evaluated for blood flow in vessels with stenosis. Simulation results show that the proposed method is able to estimate the flow rate with less than 9% bias.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Ultrasound Imaging

    Get PDF
    In this book, we present a dozen state of the art developments for ultrasound imaging, for example, hardware implementation, transducer, beamforming, signal processing, measurement of elasticity and diagnosis. The editors would like to thank all the chapter authors, who focused on the publication of this book

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Occupational Therapy Resource Guide for the Utilization of Three-Dimensional Printing

    Get PDF
    Many practitioners in the field of occupational therapy are unaware of the benefits and importance of implementing a three-dimensional (3D) printer in practice indicating that there is a need for occupational therapy involving the fitting, environmental modifications, and training on how to properly use a 3D printed prosthetic within the upper extremity. 3D printing is when a digital design is converted into a designed material that has a functional purpose and different materials can be used including metal, plastics, and composite materials (Thomas & Claypole, 2016). 3D printing has many unique and effective uses like creating adaptive devices, feeding devices, prosthesis, and splinting. While 3D printing is currently being implemented across certain pediatric populations creating prosthesis, a lack of evidence was noted regarding the use of a 3D printer throughout occupational therapy. (Burn, M. B., Anderson, T., & Gogola, G. R., 2016). This is unfortunate as 3D printing is an innovative field of study that can aid many populations in becoming more independent and functional in daily tasks while increasing quality of life. A comprehensive literature review on the populations that utilize printing was conducted. The lack of occupational therapy involvement in the transition process of creating and training for the use of a 3D prosthetic, yields the demand for occupational therapy services. The information obtained aided in the development of a resource guide containing the importance of occupational therapy services involved with the transition process of a 3D printing. The literature review led the authors to focus on the main areas of rehabilitation phases, splinting and prosthetics, adaptive equipment, 3D printers, printing filaments, and various safety considerations. The integration of occupational therapy in 3D printing will greatly ease the clients’ transitions during rehabilitation phases while increasing their level of function and quality of life. 3D printing is a cost effective, user-friendly, creative, and innovative approach to add to practice. 3D printing is an up-and-coming area of occupational therapy and has the potential to change lives

    Looking into carpal tunnel syndrome: prediction and improvement of clinical outcome

    Get PDF

    Looking into carpal tunnel syndrome: prediction and improvement of clinical outcome

    Get PDF

    Image processing in medical ultrasound

    Get PDF
    This Ph.D project addresses image processing in medical ultrasound and seeks to achieve two major scientific goals: First to develop an understanding of the most significant factors influencing image quality in medical ultrasound, and secondly to use this knowledge to develop image processing methods for enhancing the diagnostic value of medical ultrasound. The project is an industrial Ph.D project co-sponsored by BK Medical ApS., with the commercial goal to improve the image quality of BK Medicals scanners. Currently BK Medical employ a simple conventional delay-and-sum beamformer to generate B-mode images. This is a simple and well understood method that allows dynamic receive focusing for an improved resolution, the drawback is that only optimal focus is achieved in the transmit focus point. Synthetic aperture techniques can overcome this drawback, but at a cost of increased system complexity and computational demands. The development goal of this project is to implement, Synthetic Aperture Sequential Beamforming (SASB), a new synthetic aperture (SA) beamforming method. The benefit of SASB is an improved image quality compared to conventional beamforming and a reduced system complexity compared to conventional synthetic aperture techniques. The implementation is evaluated using both simulations and measurements for technical and clinical evaluations. During the course of the project three sub-projects were conducted. The first project were development and implementation of a real-time data acquisition system. The system were implemented using the commercial available 2202 ProFocus BK Medical ultrasound scanner equipped with a research interface and a standard PC. The main feature of the system is the possibility to acquire several seconds of interleaved data, switching between multiple imaging setups. This makes the system well suited for development of new processing methods and for clinical evaluations, where acquisition of the exact same scan location for multiple methods is important. The second project addressed implementation, development and evaluation of SASB using a convex array transducer. The evaluation were performed as a three phased clinical trial. In the first phase, the prototype phase, the technical performance of SASB were evaluated using the ultrasound simulation software Field II and Beamformation toolbox III (BFT3) and subsequently evaluated using phantom and in-vivo measurements. The technical performance were compared to conventional beamforming and gave motivation to continue to phase two. The second phase evaluated the clinical performance of abdominal imaging in a pre-clinical trial in comparison with conventional imaging, and were conducted as a double blinded study. The result of the pre-clinical trialmotivated for a larger scale clinical trial. Each of the two clinical trials were performed in collaboration with Copenhagen University Hospital, Rigshospitalet, and Copenhagen University, Department of Biostatistic. Evaluations were performed by medical doctors and experts in ultrasound, using the developed Image Quality assessment program (IQap). The study concludes that the image quality in terms of spatial resolution, contrast and unwanted artifacts is statistically better using SASB imaging than conventional imaging. The third and final project concerned simulation of the acoustic field for high quality imaging systems. During the simulation study of SASB, it was noted that the simulated results did not predict the measured responses with an appropriate confidence for simulated systemperformance evaluation. Closer inspection of themeasured transducer characteristics showed a sever time-offlight phase error, sensitivity deviations, and deviating frequency responses between elements. Simulations combined with experimentally determined element pulse echo wavelets, showed that conventional simulation using identical pulse echo wavelets for all elements is too simplistic to capture the true performance of the imaging system, and that the simulations can be improved by including individual pulse echo wavelets for each element. Using the improved model the accuracy of the simulated response is improved significantly and is useful for simulated systemevaluation. Itwas further shown that conventional imaging is less sensitive to phase and sensitivity errors than SASB imaging. This shows that for simulated performance evaluation a realistic simulation model is important for a reliable evaluation of new high quality imaging systems

    Adaptive kernel estimation for enhanced filtering and pattern classification of magnetic resonance imaging: novel techniques for evaluating the biomechanics and pathologic conditions of the lumbar spine

    Get PDF
    This dissertation investigates the contribution the lumbar spine musculature has on etiological and pathogenic characteristics of low back pain and lumbar spondylosis. This endeavor necessarily required a two-step process: 1) design of an accurate post-processing method for extracting relevant information via magnetic resonance images and 2) determine pathological trends by elucidating high-dimensional datasets through multivariate pattern classification. The lumbar musculature was initially evaluated by post-processing and segmentation of magnetic resonance (MR) images of the lumbar spine, which characteristically suffer from nonlinear corruption of the signal intensity. This so called intensity inhomogeneity degrades the efficacy of traditional intensity-based segmentation algorithms. Proposed in this dissertation is a solution for filtering individual MR images by extracting a map of the underlying intensity inhomogeneity to adaptively generate local estimates of the kernel’s optimal bandwidth. The adaptive kernel is implemented and tested within the structure of the non-local means filter, but also generalized and extended to the Gaussian and anisotropic diffusion filters. Testing of the proposed filters showed that the adaptive kernel significantly outperformed their non-adaptive counterparts. A variety of performance metrics were utilized to measure either fine feature preservation or accuracy of post-processed segmentation. Based on these metrics the adaptive filters proposed in this dissertation significantly outperformed the non-adaptive versions. Using the proposed filter, the MR data was semi-automatically segmented to delineate between adipose and lean muscle tissues. Two important findings were reached utilizing this data. First, a clear distinction between the musculature of males and females was established that provided 100% accuracy in being able to predict gender. Second, degenerative lumbar spines were accurately predicted at a rate of up to 92% accuracy. These results solidify prior assumptions made regarding sexual dimorphic anatomy and the pathogenic nature of degenerative spine disease
    • …
    corecore