366 research outputs found

    An efficient resource sharing technique for multi-tenant databases

    Get PDF
    Multi-tenancy is one of the key components of cloud computing environment. Multi-tenant database system in SaaS (Software as a Service) has gained a lot of attention in academics, research and business arena. These database systems provide scalability and economic benefits for both cloud service providers and customers(organizations/companies referred as tenants) by sharing same resources and infrastructure in isolation of shared databases, network and computing resources with Service level agreement (SLA) compliances. In a multitenant scenario, active tenants compete for resources in order to access the database. If one tenant blocks up the resources, the performance of all the other tenants may be restricted and a fair sharing of the resources may be compromised. The performance of tenants must not be affected by resource-intensive activities and volatile workloads of other tenants. Moreover, the prime goal of providers is to accomplish low cost of operation, satisfying specific schemas/SLAs of each tenant. Consequently, there is a need to design and develop effective and dynamic resource sharing algorithms which can handle above mentioned issues. This work presents a model embracing a query classification and worker sorting technique to efficiently share I/O, CPU and Memory thus enhancing dynamic resource sharing and improvising the utilization of idle instances proficiently. The model is referred as Multi-Tenant Dynamic Resource Scheduling Model (MTDRSM) .The MTDRSM support workload execution of different benchmark such as TPC-C(Transaction Processing Performance Council), YCSB(The Yahoo! Cloud Serving Benchmark)etc. and on different database such as MySQL, Oracle, H2 database etc. Experiments are conducted for different benchmarks with and without SLA compliances to evaluate the performance of MTDRSM in terms of latency and throughput achieved. The experiments show significant performance improvement over existing Mute Bench model in terms of latency and throughput

    A Review Of Multi-Tenant Database And Factors That Influence Its Adoption.

    Get PDF
    A Multi-tenant database (MTD) is a way of deploying a Database as a Service (DaaS). This is gaining momentum with significant increase in the number of organizations ready to take advantage of the technology. A multi-tenant database refers to a principle where a single instance of a Database Management System (DBMS) runs on a server, serving multiple clients organizations (tenants). This is a database which provides database support to a number of separate and distinct groups of users or tenants. This concept spreads the cost of hardware, software and other services to a large number of tenants, therefore significantly reducing per tenant cost. Three different approaches of implementing multi-tenant database have been identified. These methods have been shown to be increasingly better at pooling resources and also processing administrative operations in bulk. This paper reports the requirement of multi-tenant databases, challenges of implementing MTD, database migration for elasticity in MTD and factors influencing the choice of models in MTD. An insightful discussion is presented in this paper by grouping these factors into four categories. This shows that the degree of tenancy is an influence to the approach to be adopted and the capital and operational expenditure are greatly reduced in comparison with an on-premises solutio

    Toward Customizable Multi-tenant SaaS Applications

    Get PDF
    abstract: Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamically scalable, virtualized manner. However, the current industrial cloud computing implementations promote segregation among different cloud providers, which leads to user lockdown because of prohibitive migration cost. On the other hand, Service-Orented Computing (SOC) including service-oriented architecture (SOA) and Web Services (WS) promote standardization and openness with its enabling standards and communication protocols. This thesis proposes a Service-Oriented Cloud Computing Architecture by combining the best attributes of the two paradigms to promote an open, interoperable environment for cloud computing development. Mutil-tenancy SaaS applicantions built on top of SOCCA have more flexibility and are not locked down by a certain platform. Tenants residing on a multi-tenant application appear to be the sole owner of the application and not aware of the existence of others. A multi-tenant SaaS application accommodates each tenant’s unique requirements by allowing tenant-level customization. A complex SaaS application that supports hundreds, even thousands of tenants could have hundreds of customization points with each of them providing multiple options, and this could result in a huge number of ways to customize the application. This dissertation also proposes innovative customization approaches, which studies similar tenants’ customization choices and each individual users behaviors, then provides guided semi-automated customization process for the future tenants. A semi-automated customization process could enable tenants to quickly implement the customization that best suits their business needs.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    SDSN@RT: a middleware environment for single-instance multi-tenant cloud applications

    Get PDF
    With the Single-Instance Multi-Tenancy (SIMT) model for composite Software-as-a-Service (SaaS) applications, a single composite application instance can host multiple tenants, yielding the benefits of better service and resource utilization, and reduced operational cost for the SaaS provider. An SIMT application needs to share services and their aggregation (the application) among its tenants while supporting variations in the functional and performance requirements of the tenants. The SaaS provider requires a middleware environment that can deploy, enact and manage a designed SIMT application, to achieve the varied requirements of the different tenants in a controlled manner. This paper presents the SDSN@RT (Software-Defined Service Networks @ RunTime) middleware environment that can meet the aforementioned requirements. SDSN@RT represents an SIMT composite cloud application as a multi-tenant service network, where the same service network simultaneously hosts a set of virtual service networks (VSNs), one for each tenant. A service network connects a set of services, and coordinates the interactions between them. A VSN realizes the requirements for a specific tenant and can be deployed, configured, and logically isolated in the service network at runtime. SDSN@RT also supports the monitoring and runtime changes of the deployed multi-tenant service networks. We show the feasibility of SDSN@RT with a prototype implementation, and demonstrate its capabilities to host SIMT applications and support their changes with a case study. The performance study of the prototype implementation shows that the runtime capabilities of our middleware incur little overhead

    Degrees of tenant isolation for cloud-hosted software services : a cross-case analysis

    Get PDF
    A challenge, when implementing multi-tenancy in a cloud-hosted software service, is how to ensure that the performance and resource consumption of one tenant does not adversely affect other tenants. Software designers and architects must achieve an optimal degree of tenant isolation for their chosen application requirements. The objective of this research is to reveal the trade-offs, commonalities, and differences to be considered when implementing the required degree of tenant isolation. This research uses a cross-case analysis of selected open source cloud-hosted software engineering tools to empirically evaluate varying degrees of isolation between tenants. Our research reveals five commonalities across the case studies: disk space reduction, use of locking, low cloud resource consumption, customization and use of plug-in architecture, and choice of multi-tenancy pattern. Two of these common factors compromise tenant isolation. The degree of isolation is reduced when there is no strategy to reduce disk space and customization and plug-in architecture is not adopted. In contrast, the degree of isolation improves when careful consideration is given to how to handle a high workload, locking of data and processes is used to prevent clashes between multiple tenants and selection of appropriate multi-tenancy pattern. The research also revealed five case study differences: size of generated data, cloud resource consumption, sensitivity to workload changes, the effect of the software process, client latency and bandwidth, and type of software process. The degree of isolation is impaired, in our results, by the large size of generated data, high resource consumption by certain software processes, high or fluctuating workload, low client latency, and bandwidth when transferring multiple files between repositories. Additionally, this research provides a novel explanatory framework for (i) mapping tenant isolation to different software development processes, cloud resources and layers of the cloud stack; and (ii) explaining the different trade-offs to consider affecting tenant isolation (i.e. resource sharing, the number of users/requests, customizability, the size of generated data, the scope of control of the cloud application stack and business constraints) when implementing multi-tenant cloud-hosted software services. This research suggests that software architects have to pay attention to the trade-offs, commonalities, and differences we identify to achieve their degree of tenant isolation requirements

    Resource management in a containerized cloud : status and challenges

    Get PDF
    Cloud computing heavily relies on virtualization, as with cloud computing virtual resources are typically leased to the consumer, for example as virtual machines. Efficient management of these virtual resources is of great importance, as it has a direct impact on both the scalability and the operational costs of the cloud environment. Recently, containers are gaining popularity as virtualization technology, due to the minimal overhead compared to traditional virtual machines and the offered portability. Traditional resource management strategies however are typically designed for the allocation and migration of virtual machines, so the question arises how these strategies can be adapted for the management of a containerized cloud. Apart from this, the cloud is also no longer limited to the centrally hosted data center infrastructure. New deployment models have gained maturity, such as fog and mobile edge computing, bringing the cloud closer to the end user. These models could also benefit from container technology, as the newly introduced devices often have limited hardware resources. In this survey, we provide an overview of the current state of the art regarding resource management within the broad sense of cloud computing, complementary to existing surveys in literature. We investigate how research is adapting to the recent evolutions within the cloud, being the adoption of container technology and the introduction of the fog computing conceptual model. Furthermore, we identify several challenges and possible opportunities for future research
    • …
    corecore