1,235 research outputs found

    Relational Cloud: The Case for a Database Service

    Get PDF
    In this paper, we make the case for â databases as a serviceâ (DaaS), with two target scenarios in mind: (i) consolidation of data management functionality for large organizations and (ii) outsourcing data management to a cloud-based service provider for small/medium organizations. We analyze the many challenges to be faced, and discuss the design of a database service we are building, called Relational Cloud. The system has been designed from scratch and combines many recent advances and novel solutions. The prototype we present exploits multiple dedicated storage engines, provides high-availability via transparent replication, supports automatic workload partitioning and live data migration, and provides serializable distributed transactions. While the system is still under active development, we are able to present promising initial results that showcase the key features of our system. The tests are based on TPC benchmarks and real-world data from epinions.com, and show our partitioning, scalability and balancing capabilities

    Whirlpool: Improving Dynamic Cache Management with Static Data Classification

    Get PDF
    Cache hierarchies are increasingly non-uniform and difficult to manage. Several techniques, such as scratchpads or reuse hints, use static information about how programs access data to manage the memory hierarchy. Static techniques are effective on regular programs, but because they set fixed policies, they are vulnerable to changes in program behavior or available cache space. Instead, most systems rely on dynamic caching policies that adapt to observed program behavior. Unfortunately, dynamic policies spend significant resources trying to learn how programs use memory, and yet they often perform worse than a static policy. We present Whirlpool, a novel approach that combines static information with dynamic policies to reap the benefits of each. Whirlpool statically classifies data into pools based on how the program uses memory. Whirlpool then uses dynamic policies to tune the cache to each pool. Hence, rather than setting policies statically, Whirlpool uses static analysis to guide dynamic policies. We present both an API that lets programmers specify pools manually and a profiling tool that discovers pools automatically in unmodified binaries. We evaluate Whirlpool on a state-of-the-art NUCA cache. Whirlpool significantly outperforms prior approaches: on sequential programs, Whirlpool improves performance by up to 38% and reduces data movement energy by up to 53%; on parallel programs, Whirlpool improves performance by up to 67% and reduces data movement energy by up to 2.6x.National Science Foundation (U.S.) (grant CCF-1318384)National Science Foundation (U.S.) (CAREER-1452994)Samsung (Firm) (GRO award

    Quality of Service Aware Data Stream Processing for Highly Dynamic and Scalable Applications

    Get PDF
    Huge amounts of georeferenced data streams are arriving daily to data stream management systems that are deployed for serving highly scalable and dynamic applications. There are innumerable ways at which those loads can be exploited to gain deep insights in various domains. Decision makers require an interactive visualization of such data in the form of maps and dashboards for decision making and strategic planning. Data streams normally exhibit fluctuation and oscillation in arrival rates and skewness. Those are the two predominant factors that greatly impact the overall quality of service. This requires data stream management systems to be attuned to those factors in addition to the spatial shape of the data that may exaggerate the negative impact of those factors. Current systems do not natively support services with quality guarantees for dynamic scenarios, leaving the handling of those logistics to the user which is challenging and cumbersome. Three workloads are predominant for any data stream, batch processing, scalable storage and stream processing. In this thesis, we have designed a quality of service aware system, SpatialDSMS, that constitutes several subsystems that are covering those loads and any mixed load that results from intermixing them. Most importantly, we natively have incorporated quality of service optimizations for processing avalanches of geo-referenced data streams in highly dynamic application scenarios. This has been achieved transparently on top of the codebases of emerging de facto standard best-in-class representatives, thus relieving the overburdened shoulders of the users in the presentation layer from having to reason about those services. Instead, users express their queries with quality goals and our system optimizers compiles that down into query plans with an embedded quality guarantee and leaves logistic handling to the underlying layers. We have developed standard compliant prototypes for all the subsystems that constitutes SpatialDSMS

    Dynamic data placement and discovery in wide-area networks

    Get PDF
    The workloads of online services and applications such as social networks, sensor data platforms and web search engines have become increasingly global and dynamic, setting new challenges to providing users with low latency access to data. To achieve this, these services typically leverage a multi-site wide-area networked infrastructure. Data access latency in such an infrastructure depends on the network paths between users and data, which is determined by the data placement and discovery strategies. Current strategies are static, which offer low latencies upon deployment but worse performance under a dynamic workload. We propose dynamic data placement and discovery strategies for wide-area networked infrastructures, which adapt to the data access workload. We achieve this with data activity correlation (DAC), an application-agnostic approach for determining the correlations between data items based on access pattern similarities. By dynamically clustering data according to DAC, network traffic in clusters is kept local. We utilise DAC as a key component in reducing access latencies for two application scenarios, emphasising different aspects of the problem: The first scenario assumes the fixed placement of data at sites, and thus focusses on data discovery. This is the case for a global sensor discovery platform, which aims to provide low latency discovery of sensor metadata. We present a self-organising hierarchical infrastructure consisting of multiple DAC clusters, maintained with an online and distributed split-and-merge algorithm. This reduces the number of sites visited, and thus latency, during discovery for a variety of workloads. The second scenario focusses on data placement. This is the case for global online services that leverage a multi-data centre deployment to provide users with low latency access to data. We present a geo-dynamic partitioning middleware, which maintains DAC clusters with an online elastic partition algorithm. It supports the geo-aware placement of partitions across data centres according to the workload. This provides globally distributed users with low latency access to data for static and dynamic workloads.Open Acces

    [Activity of Institute for Computer Applications in Science and Engineering]

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science
    • …
    corecore