40 research outputs found

    Information Geometrically Generalized Covariate Shift Adaptation

    Full text link
    Many machine learning methods assume that the training and test data follow the same distribution. However, in the real world, this assumption is very often violated. In particular, the phenomenon that the marginal distribution of the data changes is called covariate shift, one of the most important research topics in machine learning. We show that the well-known family of covariate shift adaptation methods is unified in the framework of information geometry. Furthermore, we show that parameter search for geometrically generalized covariate shift adaptation method can be achieved efficiently. Numerical experiments show that our generalization can achieve better performance than the existing methods it encompasses

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brainā€“machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Intelligent Biosignal Analysis Methods

    Get PDF
    This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others

    Development of situation recognition, environment monitoring and patient condition monitoring service modules for hospital robots

    Get PDF
    An aging society and economic pressure have caused an increase in the patient-to-staff ratio leading to a reduction in healthcare quality. In order to combat the deficiencies in the delivery of patient healthcare, the European Commission in the FP6 scheme approved the financing of a research project for the development of an Intelligent Robot Swarm for Attendance, Recognition, Cleaning and Delivery (iWARD). Each iWARD robot contained a mobile, self-navigating platform and several modules attached to it to perform their specific tasks. As part of the iWARD project, the research described in this thesis is interested to develop hospital robot modules which are able to perform the tasks of surveillance and patient monitoring in a hospital environment for four scenarios: Intruder detection, Patient behavioural analysis, Patient physical condition monitoring, and Environment monitoring. Since the Intruder detection and Patient behavioural analysis scenarios require the same equipment, they can be combined into one common physical module called Situation recognition module. The other two scenarios are to be served by their separate modules: Environment monitoring module and Patient condition monitoring module. The situation recognition module uses non-intrusive machine vision-based concepts. The system includes an RGB video camera and a 3D laser sensor, which monitor the environment in order to detect an intruder, or a patient lying on the floor. The system deals with various image-processing and sensor fusion techniques. The environment monitoring module monitors several parameters of the hospital environment: temperature, humidity and smoke. The patient condition monitoring system remotely measures the following body conditions: body temperature, heart rate, respiratory rate, and others, using sensors attached to the patientā€™s body. The system algorithm and module software is implemented in C/C++ and uses the OpenCV image analysis and processing library and is successfully tested on Linux (Ubuntu) Platform. The outcome of this research has significant contribution to the robotics application area in the hospital environment

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing
    corecore