117,183 research outputs found

    Adaptive Random Walks on the Class of Web Graph

    Full text link
    We study random walk with adaptive move strategies on a class of directed graphs with variable wiring diagram. The graphs are grown from the evolution rules compatible with the dynamics of the world-wide Web [Tadi\'c, Physica A {\bf 293}, 273 (2001)], and are characterized by a pair of power-law distributions of out- and in-degree for each value of the parameter β\beta, which measures the degree of rewiring in the graph. The walker adapts its move strategy according to locally available information both on out-degree of the visited node and in-degree of target node. A standard random walk, on the other hand, uses the out-degree only. We compute the distribution of connected subgraphs visited by an ensemble of walkers, the average access time and survival probability of the walks. We discuss these properties of the walk dynamics relative to the changes in the global graph structure when the control parameter β\beta is varied. For β3\beta \geq 3, corresponding to the world-wide Web, the access time of the walk to a given level of hierarchy on the graph is much shorter compared to the standard random walk on the same graph. By reducing the amount of rewiring towards rigidity limit \beta \to \beta_c \lesss im 0.1, corresponding to the range of naturally occurring biochemical networks, the survival probability of adaptive and standard random walk become increasingly similar. The adaptive random walk can be used as an efficient message-passing algorithm on this class of graphs for large degree of rewiring.Comment: 8 pages, including 7 figures; to appear in Europ. Phys. Journal

    Approximate Message Passing with Consistent Parameter Estimation and Applications to Sparse Learning

    Full text link
    We consider the estimation of an i.i.d. (possibly non-Gaussian) vector \xbf \in \R^n from measurements \ybf \in \R^m obtained by a general cascade model consisting of a known linear transform followed by a probabilistic componentwise (possibly nonlinear) measurement channel. A novel method, called adaptive generalized approximate message passing (Adaptive GAMP), that enables joint learning of the statistics of the prior and measurement channel along with estimation of the unknown vector \xbf is presented. The proposed algorithm is a generalization of a recently-developed EM-GAMP that uses expectation-maximization (EM) iterations where the posteriors in the E-steps are computed via approximate message passing. The methodology can be applied to a large class of learning problems including the learning of sparse priors in compressed sensing or identification of linear-nonlinear cascade models in dynamical systems and neural spiking processes. We prove that for large i.i.d. Gaussian transform matrices the asymptotic componentwise behavior of the adaptive GAMP algorithm is predicted by a simple set of scalar state evolution equations. In addition, we show that when a certain maximum-likelihood estimation can be performed in each step, the adaptive GAMP method can yield asymptotically consistent parameter estimates, which implies that the algorithm achieves a reconstruction quality equivalent to the oracle algorithm that knows the correct parameter values. Remarkably, this result applies to essentially arbitrary parametrizations of the unknown distributions, including ones that are nonlinear and non-Gaussian. The adaptive GAMP methodology thus provides a systematic, general and computationally efficient method applicable to a large range of complex linear-nonlinear models with provable guarantees.Comment: 14 pages, 3 figure

    A Preference Model on Adaptive Affinity Propagation

    Get PDF
    In recent years, two new data clustering algorithms have been proposed. One of them isAffinity Propagation (AP). AP is a new data clustering technique that use iterative message passing and consider all data points as potential exemplars. Two important inputs of AP are a similarity matrix (SM) of the data and the parameter ”preference” p. Although the original AP algorithm has shown much success in data clustering, it still suffer from one limitation: it is not easy to determine the value of the parameter ”preference” p which can result an optimal clustering solution. To resolve this limitation, we propose a new model of the parameter ”preference” p, i.e. it is modeled based on the similarity distribution. Having the SM and p, Modified Adaptive AP (MAAP) procedure is running. MAAP procedure means that we omit the adaptive p-scanning algorithm as in original Adaptive-AP (AAP) procedure. Experimental results on random non-partition and partition data sets show that (i) the proposed algorithm, MAAP-DDP, is slower than original AP for random non-partition dataset, (ii) for random 4-partition dataset and real datasets the proposed algorithm has succeeded to identify clusters according to the number of dataset’s true labels with the execution times that are comparable with those original AP. Beside that the MAAP-DDP algorithm demonstrates more feasible and effective than original AAP procedure
    corecore