13,447 research outputs found

    Learning Discriminative Multilevel Structured Dictionaries for Supervised Image Classification

    Full text link
    Sparse representations using overcomplete dictionaries have proved to be a powerful tool in many signal processing applications such as denoising, super-resolution, inpainting, compression or classification. The sparsity of the representation very much depends on how well the dictionary is adapted to the data at hand. In this paper, we propose a method for learning structured multilevel dictionaries with discriminative constraints to make them well suited for the supervised pixelwise classification of images. A multilevel tree-structured discriminative dictionary is learnt for each class, with a learning objective concerning the reconstruction errors of the image patches around the pixels over each class-representative dictionary. After the initial assignment of the class labels to image pixels based on their sparse representations over the learnt dictionaries, the final classification is achieved by smoothing the label image with a graph cut method and an erosion method. Applied to a common set of texture images, our supervised classification method shows competitive results with the state of the art

    Adaptive diffusion constrained total variation scheme with application to `cartoon + texture + edge' image decomposition

    Full text link
    We consider an image decomposition model involving a variational (minimization) problem and an evolutionary partial differential equation (PDE). We utilize a linear inhomogenuous diffusion constrained and weighted total variation (TV) scheme for image adaptive decomposition. An adaptive weight along with TV regularization splits a given image into three components representing the geometrical (cartoon), textural (small scale - microtextures), and edges (big scale - macrotextures). We study the wellposedness of the coupled variational-PDE scheme along with an efficient numerical scheme based on Chambolle's dual minimization method. We provide extensive experimental results in cartoon-texture-edges decomposition, and denoising as well compare with other related variational, coupled anisotropic diffusion PDE based methods

    Global Variational Method for Fingerprint Segmentation by Three-part Decomposition

    Full text link
    Verifying an identity claim by fingerprint recognition is a commonplace experience for millions of people in their daily life, e.g. for unlocking a tablet computer or smartphone. The first processing step after fingerprint image acquisition is segmentation, i.e. dividing a fingerprint image into a foreground region which contains the relevant features for the comparison algorithm, and a background region. We propose a novel segmentation method by global three-part decomposition (G3PD). Based on global variational analysis, the G3PD method decomposes a fingerprint image into cartoon, texture and noise parts. After decomposition, the foreground region is obtained from the non-zero coefficients in the texture image using morphological processing. The segmentation performance of the G3PD method is compared to five state-of-the-art methods on a benchmark which comprises manually marked ground truth segmentation for 10560 images. Performance evaluations show that the G3PD method consistently outperforms existing methods in terms of segmentation accuracy

    Linearized Alternating Direction Method with Adaptive Penalty and Warm Starts for Fast Solving Transform Invariant Low-Rank Textures

    Full text link
    Transform Invariant Low-rank Textures (TILT) is a novel and powerful tool that can effectively rectify a rich class of low-rank textures in 3D scenes from 2D images despite significant deformation and corruption. The existing algorithm for solving TILT is based on the alternating direction method (ADM). It suffers from high computational cost and is not theoretically guaranteed to converge to a correct solution. In this paper, we propose a novel algorithm to speed up solving TILT, with guaranteed convergence. Our method is based on the recently proposed linearized alternating direction method with adaptive penalty (LADMAP). To further reduce computation, warm starts are also introduced to initialize the variables better and cut the cost on singular value decomposition. Extensive experimental results on both synthetic and real data demonstrate that this new algorithm works much more efficiently and robustly than the existing algorithm. It could be at least five times faster than the previous method.Comment: Accepted by International Journal of Computer Vision (IJCV

    Segmentation of Scanning Tunneling Microscopy Images Using Variational Methods and Empirical Wavelets

    Full text link
    In the fields of nanoscience and nanotechnology, it is important to be able to functionalize surfaces chemically for a wide variety of applications. Scanning tunneling microscopes (STMs) are important instruments in this area used to measure the surface structure and chemistry with better than molecular resolution. Self-assembly is frequently used to create monolayers that redefine the surface chemistry in just a single-molecule-thick layer. Indeed, STM images reveal rich information about the structure of self-assembled monolayers since they convey chemical and physical properties of the studied material. In order to assist in and to enhance the analysis of STM and other images, we propose and demonstrate an image-processing framework that produces two image segmentations: one is based on intensities (apparent heights in STM images) and the other is based on textural patterns. The proposed framework begins with a cartoon+texture decomposition, which separates an image into its cartoon and texture components. Afterward, the cartoon image is segmented by a modified multiphase version of the local Chan-Vese model, while the texture image is segmented by a combination of 2D empirical wavelet transform and a clustering algorithm. Overall, our proposed framework contains several new features, specifically in presenting a new application of cartoon+texture decomposition and of the empirical wavelet transforms and in developing a specialized framework to segment STM images and other data. To demonstrate the potential of our approach, we apply it to actual STM images of cyanide monolayers on Au\{111\} and present their corresponding segmentation results

    Survey of Computer Vision and Machine Learning in Gastrointestinal Endoscopy

    Full text link
    This paper attempts to provide the reader a place to begin studying the application of computer vision and machine learning to gastrointestinal (GI) endoscopy. They have been classified into 18 categories. It should be be noted by the reader that this is a review from pre-deep learning era. A lot of deep learning based applications have not been covered in this thesis

    Directional Global Three-part Image Decomposition

    Full text link
    We consider the task of image decomposition and we introduce a new model coined directional global three-part decomposition (DG3PD) for solving it. As key ingredients of the DG3PD model, we introduce a discrete multi-directional total variation norm and a discrete multi-directional G-norm. Using these novel norms, the proposed discrete DG3PD model can decompose an image into two parts or into three parts. Existing models for image decomposition by Vese and Osher, by Aujol and Chambolle, by Starck et al., and by Thai and Gottschlich are included as special cases in the new model. Decomposition of an image by DG3PD results in a cartoon image, a texture image and a residual image. Advantages of the DG3PD model over existing ones lie in the properties enforced on the cartoon and texture images. The geometric objects in the cartoon image have a very smooth surface and sharp edges. The texture image yields oscillating patterns on a defined scale which is both smooth and sparse. Moreover, the DG3PD method achieves the goal of perfect reconstruction by summation of all components better than the other considered methods. Relevant applications of DG3PD are a novel way of image compression as well as feature extraction for applications such as latent fingerprint processing and optical character recognition

    Fast Multi-Layer Laplacian Enhancement

    Full text link
    A novel, fast and practical way of enhancing images is introduced in this paper. Our approach builds on Laplacian operators of well-known edge-aware kernels, such as bilateral and nonlocal means, and extends these filter's capabilities to perform more effective and fast image smoothing, sharpening and tone manipulation. We propose an approximation of the Laplacian, which does not require normalization of the kernel weights. Multiple Laplacians of the affinity weights endow our method with progressive detail decomposition of the input image from fine to coarse scale. These image components are blended by a structure mask, which avoids noise/artifact magnification or detail loss in the output image. Contributions of the proposed method to existing image editing tools are: (1) Low computational and memory requirements, making it appropriate for mobile device implementations (e.g. as a finish step in a camera pipeline), (2) A range of filtering applications from detail enhancement to denoising with only a few control parameters, enabling the user to apply a combination of various (and even opposite) filtering effects

    Depth Sequence Coding with Hierarchical Partitioning and Spatial-domain Quantisation

    Full text link
    Depth coding in 3D-HEVC for the multiview video plus depth (MVD) architecture (i) deforms object shapes due to block-level edge-approximation; (ii) misses an opportunity for high compressibility at near-lossless quality by failing to exploit strong homogeneity (clustering tendency) in depth syntax, motion vector components, and residuals at frame-level; and (iii) restricts interactivity and limits responsiveness of independent use of depth information for "non-viewing" applications due to texture-depth coding dependency. This paper presents a standalone depth sequence coder, which operates in the lossless to near-lossless quality range while compressing depth data superior to lossy 3D-HEVC. It preserves edges implicitly by limiting quantisation to the spatial-domain and exploits clustering tendency efficiently at frame-level with a novel binary tree based decomposition (BTBD) technique. For mono-view coding of standard MVD test sequences, on average, (i) lossless BTBD achieved ×42.2\times 42.2 compression-ratio and −60.0%-60.0\% coding gain against the pseudo-lossless 3D-HEVC, using the lowest quantisation parameter QP=1QP = 1, and (ii) near-lossless BTBD achieved −79.4%-79.4\% and 6.986.98 dB Bj{\o}ntegaard delta bitrate (BD-BR) and distortion (BD-PSNR), respectively, against 3D-HEVC. In view-synthesis applications, decoded depth maps from BTBD rendered superior quality synthetic-views, compared to 3D-HEVC, with −18.9%-18.9\% depth BD-BR and 0.430.43 dB synthetic-texture BD-PSNR on average.Comment: Submitted to IEEE Transactions on Image Processing. 13 pages, 5 figures, and 5 table

    Image Cartoon-Texture Decomposition Using Isotropic Patch Recurrence

    Full text link
    Aiming at separating the cartoon and texture layers from an image, cartoon-texture decomposition approaches resort to image priors to model cartoon and texture respectively. In recent years, patch recurrence has emerged as a powerful prior for image recovery. However, the existing strategies of using patch recurrence are ineffective to cartoon-texture decomposition, as both cartoon contours and texture patterns exhibit strong patch recurrence in images. To address this issue, we introduce the isotropy prior of patch recurrence, that the spatial configuration of similar patches in texture exhibits the isotropic structure which is different from that in cartoon, to model the texture component. Based on the isotropic patch recurrence, we construct a nonlocal sparsification system which can effectively distinguish well-patterned features from contour edges. Incorporating the constructed nonlocal system into morphology component analysis, we develop an effective method to both noiseless and noisy cartoon-texture decomposition. The experimental results have demonstrated the superior performance of the proposed method to the existing ones, as well as the effectiveness of the isotropic patch recurrence prior.Comment: 13 pages, 10 figure
    • …
    corecore