268 research outputs found

    Scalable Interactive Volume Rendering Using Off-the-shelf Components

    Get PDF
    This paper describes an application of a second generation implementation of the Sepia architecture (Sepia-2) to interactive volu-metric visualization of large rectilinear scalar fields. By employingpipelined associative blending operators in a sort-last configuration a demonstration system with 8 rendering computers sustains 24 to 28 frames per second while interactively rendering large data volumes (1024x256x256 voxels, and 512x512x512 voxels). We believe interactive performance at these frame rates and data sizes is unprecedented. We also believe these results can be extended to other types of structured and unstructured grids and a variety of GL rendering techniques including surface rendering and shadow map-ping. We show how to extend our single-stage crossbar demonstration system to multi-stage networks in order to support much larger data sizes and higher image resolutions. This requires solving a dynamic mapping problem for a class of blending operators that includes Porter-Duff compositing operators

    A survey of techniques and technologies for web-based real-time interactive rendering

    Get PDF
    When exploring a virtual environment, realism depends mainly on two factors: realistic images and real-time feedback (motions, behaviour etc.). In this context, photo realism and physical validity of computer generated images required by emerging applications, such as advanced e-commerce, still impose major challenges in the area of rendering research whereas the complexity of lighting phenomena further requires powerful and predictable computing if time constraints must be attained. In this technical report we address the state-of-the-art on rendering, trying to put the focus on approaches, techniques and technologies that might enable real-time interactive web-based clientserver rendering systems. The focus is on the end-systems and not the networking technologies used to interconnect client(s) and server(s).Siemens; Bertelsmann mediaSystems GmbH; Eptron Multimedia; Instituto Politécnico do Porto - ISEP-IPP; Institute Laboratory for Mixed Realities at the Academy of Media Arts Cologne, LMR; Mälardalen Real-Time Research Centre (MRTC) at Mälardalen University in Västerås; Q-Systems

    Graphic-Card Cluster for Astrophysics (GraCCA) -- Performance Tests

    Full text link
    In this paper, we describe the architecture and performance of the GraCCA system, a Graphic-Card Cluster for Astrophysics simulations. It consists of 16 nodes, with each node equipped with 2 modern graphic cards, the NVIDIA GeForce 8800 GTX. This computing cluster provides a theoretical performance of 16.2 TFLOPS. To demonstrate its performance in astrophysics computation, we have implemented a parallel direct N-body simulation program with shared time-step algorithm in this system. Our system achieves a measured performance of 7.1 TFLOPS and a parallel efficiency of 90% for simulating a globular cluster of 1024K particles. In comparing with the GRAPE-6A cluster at RIT (Rochester Institute of Technology), the GraCCA system achieves a more than twice higher measured speed and an even higher performance-per-dollar ratio. Moreover, our system can handle up to 320M particles and can serve as a general-purpose computing cluster for a wide range of astrophysics problems.Comment: Accepted for publication in New Astronom

    Data distributed, parallel algorithm for ray-traced volume rendering

    Get PDF
    Journal ArticleThis paper presents a divide-and-conquer ray-traced volume rendering algorithm and a parallel image compositing method, along with their implementation and performance on the connection Machine CM-5, and networked workstations. This algorithm distributes both the data and the computations to individual processing units to achieve fast, high-quality rendering of high-resolution data. The volume data, once distributed, is left intact. The processing nodes perform local raytracing of their sub volume concurrently. No communication between processing units is needed during this locally ray-tracing process. A subimage is generated by each processing unit and the final image is obtained by compositing subimages in the proper order, which can be determined a priori. Test results on the CM-5 and a group of networked workstations demonstrate the practicality of our rendering algorithm and compositing method

    MP-LOCKs: Replacing hardware synchronization primitives with message passing

    Get PDF
    Journal ArticleShared memory programs guarantee the correctness of concurrent accesses to shared data using interprocessor synchronization operations. The most common synchronization operators are locks, which are traditionally implemented in user-level libraries via a mix of shared memory accesses and hardware synchronization primitives like test-and-set. In this paper, we argue that synchronization operations implemented using fast message passing and kernel-embedded lock managers are an attractive alternative to dedicated synchronization hardware. We propose three message passing lock (MP-LOCK) algorithms (centralized, distributed, and reactive) and provide guidelines for implementing them efficiently. MP-LOCKs redice tje design complexity and runtime occupancy of DSM controllers and can exploit software's inherent flexibility to adapt to differing applications lock access patterns. We compared the performance of MP-LOCKs with two common shared memory lock algorithms: test-and-set and MCS locks and found that MP-LOCKs scale better. For machines with 16 to 32 nides, applications using MP-LOCKs ran up to 186% faster than the same applications with shared memory locks. For small systems (up to 8 nodes), MP-LOCK performance lags shared memory lock performance due to the higher software overhead. However, three of the MP-LOCK applications slow down by no more than 18%, while the other two slowed by no more than 180%. Given these results, we conclude that locks based on message passing should be considered as a replacement for hardware locks in future scalable multiprocessors that supports efficient message passing mechanisms. In addition, it is possible to implement efficient software synchronization primitives in clusters of workstations by using the guidelines we proposed

    Research in progress and other activities of the Institute for Computer Applications in Science and Engineering

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science
    corecore