55 research outputs found

    Local Adaptive Receptive Field Self-Organizing Map for Image Segmentation

    Get PDF
    A new self-organizing map with variable topology is introduced for image segmentation. The proposed network, called Local Adaptive Receptive Field Self-Organizing Map (LARFSOM-RBF), is a two-stage network capable of both color and border segment images. The color segmentation stage is responsibility of LARFSOM which is characterized by adaptive number of nodes, fast convergence and variable topology. For border segmentation RBF nodes are included to determine the border pixels using previously learned information of LARFSOM. LARFSOM-RBF was tested to segment images with different degrees of complexity showing promising results

    Attack visualization for intrusion detection system

    Get PDF
    Attacks detection and visualization is the process of attempting to identify instances of network misuse by comparing current activity against the expected actions of an intruder. Most current approaches to attack detection involve the use of rule-based expert systems to identify indications of known attacks. However, these techniques are less successful in identifying attacks, which vary from expected patterns. Artificial neural networks provide the potential to identify and classify network activity based on limited, incomplete, and nonlinear data sources. Presenting an approach to the process of Attack visualization that utilizes the analytical strengths of neural networks, and providing the results from a preliminary analysis of the network parameters being watched like Internet Protocol (IP) packet length, packet traffic, IP byte traffic, IP packet rate, IP byte rate, User Datagram Protocol (UDP) packet length, UDP packet traffic, UDP byte traffic, UDP packet rate, UDP byte rate, Heart Beat (HB) End-to-end delay, and HB Packet loss rate. Beside collected attack data, numerical simulated data was generated using the neural network sigmoids with Matlab. The characteristics of the obtained data showed lots of similarities with the actual collected network data. Further work is continuing to obtain different attack data using the Opnet simulating program

    Development of Some Efficient Lossless and Lossy Hybrid Image Compression Schemes

    Get PDF
    Digital imaging generates a large amount of data which needs to be compressed, without loss of relevant information, to economize storage space and allow speedy data transfer. Though both storage and transmission medium capacities have been continuously increasing over the last two decades, they dont match the present requirement. Many lossless and lossy image compression schemes exist for compression of images in space domain and transform domain. Employing more than one traditional image compression algorithms results in hybrid image compression techniques. Based on the existing schemes, novel hybrid image compression schemes are developed in this doctoral research work, to compress the images effectually maintaining the quality

    A robust framework for medical image segmentation through adaptable class-specific representation

    Get PDF
    Medical image segmentation is an increasingly important component in virtual pathology, diagnostic imaging and computer-assisted surgery. Better hardware for image acquisition and a variety of advanced visualisation methods have paved the way for the development of computer based tools for medical image analysis and interpretation. The routine use of medical imaging scans of multiple modalities has been growing over the last decades and data sets such as the Visible Human Project have introduced a new modality in the form of colour cryo section data. These developments have given rise to an increasing need for better automatic and semiautomatic segmentation methods. The work presented in this thesis concerns the development of a new framework for robust semi-automatic segmentation of medical imaging data of multiple modalities. Following the specification of a set of conceptual and technical requirements, the framework known as ACSR (Adaptable Class-Specific Representation) is developed in the first case for 2D colour cryo section segmentation. This is achieved through the development of a novel algorithm for adaptable class-specific sampling of point neighbourhoods, known as the PGA (Path Growing Algorithm), combined with Learning Vector Quantization. The framework is extended to accommodate 3D volume segmentation of cryo section data and subsequently segmentation of single and multi-channel greyscale MRl data. For the latter the issues of inhomogeneity and noise are specifically addressed. Evaluation is based on comparison with previously published results on standard simulated and real data sets, using visual presentation, ground truth comparison and human observer experiments. ACSR provides the user with a simple and intuitive visual initialisation process followed by a fully automatic segmentation. Results on both cryo section and MRI data compare favourably to existing methods, demonstrating robustness both to common artefacts and multiple user initialisations. Further developments into specific clinical applications are discussed in the future work section
    corecore