24,329 research outputs found

    A Review of Traffic Signal Control.

    Get PDF
    The aim of this paper is to provide a starting point for the future research within the SERC sponsored project "Gating and Traffic Control: The Application of State Space Control Theory". It will provide an introduction to State Space Control Theory, State Space applications in transportation in general, an in-depth review of congestion control (specifically traffic signal control in congested situations), a review of theoretical works, a review of existing systems and will conclude with recommendations for the research to be undertaken within this project

    Computer simulation of a pilot in V/STOL aircraft control loops

    Get PDF
    The objective was to develop a computerized adaptive pilot model for the computer model of the research aircraft, the Harrier II AV-8B V/STOL with special emphasis on propulsion control. In fact, two versions of the adaptive pilot are given. The first, simply called the Adaptive Control Model (ACM) of a pilot includes a parameter estimation algorithm for the parameters of the aircraft and an adaption scheme based on the root locus of the poles of the pilot controlled aircraft. The second, called the Optimal Control Model of the pilot (OCM), includes an adaption algorithm and an optimal control algorithm. These computer simulations were developed as a part of the ongoing research program in pilot model simulation supported by NASA Lewis from April 1, 1985 to August 30, 1986 under NASA Grant NAG 3-606 and from September 1, 1986 through November 30, 1988 under NASA Grant NAG 3-729. Once installed, these pilot models permitted the computer simulation of the pilot model to close all of the control loops normally closed by a pilot actually manipulating the control variables. The current version of this has permitted a baseline comparison of various qualitative and quantitative performance indices for propulsion control, the control loops and the work load on the pilot. Actual data for an aircraft flown by a human pilot furnished by NASA was compared to the outputs furnished by the computerized pilot and found to be favorable

    Technical approaches for measurement of human errors

    Get PDF
    Human error is a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents. The technical details of a variety of proven approaches for the measurement of human errors in the context of the national airspace system are presented. Unobtrusive measurements suitable for cockpit operations and procedures in part of full mission simulation are emphasized. Procedure, system performance, and human operator centered measurements are discussed as they apply to the manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations

    Delay-Based Controller Design for Continuous-Time and Hybrid Applications

    Get PDF
    Motivated by the availability of different types of delays in embedded systems and biological circuits, the objective of this work is to study the benefits that delay can provide in simplifying the implementation of controllers for continuous-time systems. Given a continuous-time linear time-invariant (LTI) controller, we propose three methods to approximate this controller arbitrarily precisely by a simple controller composed of delay blocks, a few integrators and possibly a unity feedback. Different problems associated with the approximation procedures, such as finding the optimal number of delay blocks or studying the robustness of the designed controller with respect to delay values, are then investigated. We also study the design of an LTI continuous-time controller satisfying given control objectives whose delay-based implementation needs the least number of delay blocks. A direct application of this work is in the sampled-data control of a real-time embedded system, where the sampling frequency is relatively high and/or the output of the system is sampled irregularly. Based on our results on delay-based controller design, we propose a digital-control scheme that can implement every continuous-time stabilizing (LTI) controller. Unlike a typical sampled-data controller, the hybrid controller introduced here -— consisting of an ideal sampler, a digital controller, a number of modified second-order holds and possibly a unity feedback -— is robust to sampling jitter and can operate at arbitrarily high sampling frequencies without requiring expensive, high-precision computation

    A Model for the Genesis of Arterial Pressure Mayer Waves from Heart Rate and Sympathetic Activity

    Full text link
    Both theoretic models and cross-spectral analyses suggest that an oscillating sympathetic nervous outflow generates the low frequency arterial pressure fluctuations termed Mayer waves. Fluctuations in heart rate also have been suggested to relate closely to Mayer waves, but empiric models have not assessed the joint causative influences of hemt rate and sympathetic activity. Therefore, we constructed a model based simply upon the hemodynamic equation deriving from Ohm's Law. With this model, we determined time relations and relative contributions of heart rate and sympathetic activity to the genesis of arterial pressure Mayer waves. We assessed data from eight healthy young volunteers in the basal state and in a high sympathetic state known to produce concurrent increases in sympathetic nervous outflow and Mayer wave amplitude. We fit the Mayer waves (0.05-0.20 Hz) in mean arterial pressure by the weighted sum ofleading oscillations in heart rate and sympathetic nerve activity. This model of our data showed heart rate oscillations leading by 2-3.75 seconds were responsible for almost half of the variance in arterial pressure (basal R^2=0.435±0.140, high sympathetic R^2=0.438±0.180). Surprisingly, sympathetic activity (lead 0-5 seconds) contributed only modestly to the explained variance in Mayer waves during either sympathetic state (basal: ∆R^2=0.046±0.026; heightened: ∆R^2=0.085±0.036). Thus, it appears that heart rate oscillations contribute to Mayer waves in a simple linear fashion, whereas sympathetic fluctuations contribute little to Mayer waves in this way. Although these results do not exclude an important vascular sympathetic role, they do suggest that additional Ji1ctors, such as sympathetic transduction into vascular resistance, modulate its influence.Binda and Fred Shuman Foundation; National Institute on Aging (AG14376)

    A Model for the Genesis of Arterial Pressure Mayer Waves from Heart Rate and Sympathetic Activity

    Get PDF
    Both theoretic models and cross-spectral analyses suggest that an oscillating sympathetic nervous outflow generates the low frequency arterial pressure fluctuations termed Mayer waves. Fluctuations in heart rate also have been suggested to relate closely to Mayer waves, but empiric models have not assessed the joint causative influences of hemt rate and sympathetic activity. Therefore, we constructed a model based simply upon the hemodynamic equation deriving from Ohm's Law. With this model, we determined time relations and relative contributions of heart rate and sympathetic activity to the genesis of arterial pressure Mayer waves. We assessed data from eight healthy young volunteers in the basal state and in a high sympathetic state known to produce concurrent increases in sympathetic nervous outflow and Mayer wave amplitude. We fit the Mayer waves (0.05-0.20 Hz) in mean arterial pressure by the weighted sum ofleading oscillations in heart rate and sympathetic nerve activity. This model of our data showed heart rate oscillations leading by 2-3.75 seconds were responsible for almost half of the variance in arterial pressure (basal R^2=0.435±0.140, high sympathetic R^2=0.438±0.180). Surprisingly, sympathetic activity (lead 0-5 seconds) contributed only modestly to the explained variance in Mayer waves during either sympathetic state (basal: ∆R^2=0.046±0.026; heightened: ∆R^2=0.085±0.036). Thus, it appears that heart rate oscillations contribute to Mayer waves in a simple linear fashion, whereas sympathetic fluctuations contribute little to Mayer waves in this way. Although these results do not exclude an important vascular sympathetic role, they do suggest that additional Ji1ctors, such as sympathetic transduction into vascular resistance, modulate its influence.Binda and Fred Shuman Foundation; National Institute on Aging (AG14376)

    Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle

    Get PDF
    To restore functional use of paralyzed muscles by automatically controlled stimulation, an accurate quantitative model of the stimulated muscles is desirable. The most commonly used model for isometric muscle has had a Hammerstein structure, in which a linear dynamic block is preceded by a static nonlinear function, To investigate the accuracy of the Hammerstein model, the responses to a pseudo-random binary sequence (PRBS) excitation of normal human plantarflexors, stimulated with surface electrodes, were used to identify a Hammerstein model but also four local models which describe the responses to small signals at different mean levels of activation. Comparison of the local models with the Linearized Hammerstein model showed that the Hammerstein model concealed a fivefold variation in the speed of response. Also, the small-signal gain of the Hammerstein model was in error by factors up to three. We conclude that, despite the past widespread use of the Hammerstein model, it is not an accurate representation of isometric muscle. On the other hand, local models, which are more accurate predictors, can be identified from the responses to short PRBS sequences. The utility of local models for controller design is discussed
    corecore