240 research outputs found

    Adaptive Online Sequential ELM for Concept Drift Tackling

    Get PDF
    A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect underfitting condition.Comment: Hindawi Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016), Article ID 8091267, 17 pages Received 29 January 2016, Accepted 17 May 2016. Special Issue on "Advances in Neural Networks and Hybrid-Metaheuristics: Theory, Algorithms, and Novel Engineering Applications". Academic Editor: Stefan Hauf

    A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework

    Full text link
    Class imbalance poses new challenges when it comes to classifying data streams. Many algorithms recently proposed in the literature tackle this problem using a variety of data-level, algorithm-level, and ensemble approaches. However, there is a lack of standardized and agreed-upon procedures on how to evaluate these algorithms. This work presents a taxonomy of algorithms for imbalanced data streams and proposes a standardized, exhaustive, and informative experimental testbed to evaluate algorithms in a collection of diverse and challenging imbalanced data stream scenarios. The experimental study evaluates 24 state-of-the-art data streams algorithms on 515 imbalanced data streams that combine static and dynamic class imbalance ratios, instance-level difficulties, concept drift, real-world and semi-synthetic datasets in binary and multi-class scenarios. This leads to the largest experimental study conducted so far in the data stream mining domain. We discuss the advantages and disadvantages of state-of-the-art classifiers in each of these scenarios and we provide general recommendations to end-users for selecting the best algorithms for imbalanced data streams. Additionally, we formulate open challenges and future directions for this domain. Our experimental testbed is fully reproducible and easy to extend with new methods. This way we propose the first standardized approach to conducting experiments in imbalanced data streams that can be used by other researchers to create trustworthy and fair evaluation of newly proposed methods. Our experimental framework can be downloaded from https://github.com/canoalberto/imbalanced-streams

    Ensemble based on randomised neural networks for online data stream regression in presence of concept drift

    Get PDF
    The big data paradigm has posed new challenges for the Machine Learning algorithms, such as analysing continuous flows of data, in the form of data streams, and dealing with the evolving nature of the data, which cause a phenomenon often referred to in the literature as concept drift. Concept drift is caused by inconsistencies between the optimal hypotheses in two subsequent chunks of data, whereby the concept underlying a given process evolves over time, which can happen due to several factors including change in consumer preference, economic dynamics, or environmental conditions. This thesis explores the problem of data stream regression with the presence of concept drift. This problem requires computationally efficient algorithms that are able to adapt to the various types of drift that may affect the data. The development of effective algorithms for data streams with concept drift requires several steps that are discussed in this research. The first one is related to the datasets required to assess the algorithms. In general, it is not possible to determine the occurrence of concept drift on real-world datasets; therefore, synthetic datasets where the various types of concept drift can be simulated are required. The second issue is related to the choice of the algorithm. The ensemble algorithms show many advantages to deal with concept drifting data streams, which include flexibility, computational efficiency and high accuracy. For the design of an effective ensemble, this research analyses the use of randomised Neural Networks as base models, along with their optimisation. The optimisation of the randomised Neural Networks involves design and tuning hyperparameters which may substantially affect its performance. The optimisation of the base models is an important aspect to build highly accurate and computationally efficient ensembles. To cope with the concept drift, the existing methods either require setting fixed updating points, which may result in unnecessary computations or slow reaction to concept drift, or rely on drifting detection mechanism, which may be ineffective due to the difficulty to detect drift in real applications. Therefore, the research contributions of this thesis include the development of a new approach for synthetic dataset generation, development of a new hyperparameter optimisation algorithm that reduces the search effort and the need of prior assumptions compared to existing methods, the analysis of the effects of randomised Neural Networks hyperparameters, and the development of a new ensemble algorithm based on bagging meta-model that reduces the computational effort over existing methods and uses an innovative updating mechanism to cope with concept drift. The algorithms have been tested on synthetic datasets and validated on four real-world datasets from various application domains

    Concept Drift Detection in Data Stream Mining: The Review of Contemporary Literature

    Get PDF
    Mining process such as classification, clustering of progressive or dynamic data is a critical objective of the information retrieval and knowledge discovery; in particular, it is more sensitive in data stream mining models due to the possibility of significant change in the type and dimensionality of the data over a period. The influence of these changes over the mining process termed as concept drift. The concept drift that depict often in streaming data causes unbalanced performance of the mining models adapted. Hence, it is obvious to boost the mining models to predict and analyse the concept drift to achieve the performance at par best. The contemporary literature evinced significant contributions to handle the concept drift, which fall in to supervised, unsupervised learning, and statistical assessment approaches. This manuscript contributes the detailed review of the contemporary concept-drift detection models depicted in recent literature. The contribution of the manuscript includes the nomenclature of the concept drift models and their impact of imbalanced data tuples

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Robust Learning Enabled Intelligence for the Internet-of-Things: A Survey From the Perspectives of Noisy Data and Adversarial Examples

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThe Internet-of-Things (IoT) has been widely adopted in a range of verticals, e.g., automation, health, energy and manufacturing. Many of the applications in these sectors, such as self-driving cars and remote surgery, are critical and high stakes applications, calling for advanced machine learning (ML) models for data analytics. Essentially, the training and testing data that are collected by massive IoT devices may contain noise (e.g., abnormal data, incorrect labels and incomplete information) and adversarial examples. This requires high robustness of ML models to make reliable decisions for IoT applications. The research of robust ML has received tremendous attentions from both academia and industry in recent years. This paper will investigate the state-of-the-art and representative works of robust ML models that can enable high resilience and reliability of IoT intelligence. Two aspects of robustness will be focused on, i.e., when the training data of ML models contains noises and adversarial examples, which may typically happen in many real-world IoT scenarios. In addition, the reliability of both neural networks and reinforcement learning framework will be investigated. Both of these two machine learning paradigms have been widely used in handling data in IoT scenarios. The potential research challenges and open issues will be discussed to provide future research directions.Engineering and Physical Sciences Research Council (EPSRC

    Towards a Self-Sufficient Face Verification System

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] The absence of a previous collaborative manual enrolment represents a significant handicap towards designing a face verification system for face re-identification purposes. In this scenario, the system must learn the target identity incrementally, using data from the video stream during the operational authentication phase. So, manual labelling cannot be assumed apart from the first few frames. On the other hand, even the most advanced methods trained on large-scale and unconstrained datasets suffer performance degradation when no adaptation to specific contexts is performed. This work proposes an adaptive face verification system, for the continuous re-identification of target identity, within the framework of incremental unsupervised learning. Our Dynamic Ensemble of SVM is capable of incorporating non-labelled information to improve the performance of any model, even when its initial performance is modest. The proposal uses the self-training approach and is compared against other classification techniques within this same approach. Results show promising behaviour in terms of both knowledge acquisition and impostor robustness.This work has received financial support from the Spanish government (project TIN2017-90135-R MINECO (FEDER)), from The Consellaría de Cultura, Educación e Ordenación Universitaria (accreditations 2016–2019, EDG431G/01 and ED431G/08), and reference competitive groups (2017–2020, and ED431C 2017/04), and from the European Regional Development Fund (ERDF). Eric López-López has received financial support from the Xunta de Galicia and the European Union (European Social Fund – ESF)Xunta de Galicia; EDG431G/01Xunta de Galicia; ED431G/08Xunta de Galicia; ED431C 2017/0

    Incremental Learning Through Unsupervised Adaptation in Video Face Recognition

    Get PDF
    Programa Oficial de Doutoramento en Investigación en Tecnoloxías da Información. 524V01[Resumo] Durante a última década, os métodos baseados en deep learning trouxeron un salto significativo no rendemento dos sistemas de visión artificial. Unha das claves neste éxito foi a creación de grandes conxuntos de datos perfectamente etiquetados para usar durante o adestramento. En certa forma, as redes de deep learning resumen esta enorme cantidade datos en prácticos vectores multidimensionais. Por este motivo, cando as diferenzas entre os datos de adestramento e os adquiridos durante o funcionamento dos sistemas (debido a factores como o contexto de adquisición) son especialmente notorias, as redes de deep learning son susceptibles de sufrir degradación no rendemento. Mentres que a solución inmediata a este tipo de problemas sería a de recorrer a unha recolección adicional de imaxes, co seu correspondente proceso de etiquetado, esta dista moito de ser óptima. A gran cantidade de posibles variacións que presenta o mundo visual converten rápido este enfoque nunha tarefa sen fin. Máis aínda cando existen aplicacións específicas nas que esta acción é difícil, ou incluso imposible, de realizar debido a problemas de custos ou de privacidade. Esta tese propón abordar todos estes problemas usando a perspectiva da adaptación. Así, a hipótese central consiste en asumir que é posible utilizar os datos non etiquetados adquiridos durante o funcionamento para mellorar o rendemento que obteríamos con sistemas de recoñecemento xerais. Para isto, e como proba de concepto, o campo de estudo da tese restrinxiuse ao recoñecemento de caras. Esta é unha aplicación paradigmática na cal o contexto de adquisición pode ser especialmente relevante. Este traballo comeza examinando as diferenzas intrínsecas entre algúns dos contextos específicos nos que se pode necesitar o recoñecemento de caras e como estas afectan ao rendemento. Desta maneira, comparamos distintas bases de datos (xunto cos seus contextos) entre elas, usando algúns dos descritores de características máis avanzados e así determinar a necesidade real de adaptación. A partir desta punto, pasamos a presentar o método novo, que representa a principal contribución da tese: o Dynamic Ensemble of SVM (De-SVM). Este método implementa a capacidade de adaptación utilizando unha aprendizaxe incremental non supervisada na que as súas propias predicións se usan como pseudo-etiquetas durante as actualizacións (a estratexia de auto-adestramento). Os experimentos realizáronse baixo condicións de vídeo-vixilancia, un exemplo paradigmático dun contexto moi específico no que os procesos de etiquetado son particularmente complicados. As ideas claves de De-SVM probáronse en diferentes sub-problemas de recoñecemento de caras: a verificación de caras e recoñecemento de caras en conxunto pechado e en conxunto aberto. Os resultados acadados mostran un comportamento prometedor en termos de adquisición de coñecemento sen supervisión así como robustez contra impostores. Ademais, este rendemento é capaz de superar a outros métodos do estado da arte que non posúen esta capacidade de adaptación.[Resumen] Durante la última década, los métodos basados en deep learning trajeron un salto significativo en el rendimiento de los sistemas de visión artificial. Una de las claves en este éxito fue la creación de grandes conjuntos de datos perfectamente etiquetados para usar durante el entrenamiento. En cierta forma, las redes de deep learning resumen esta enorme cantidad datos en prácticos vectores multidimensionales. Por este motivo, cuando las diferencias entre los datos de entrenamiento y los adquiridos durante el funcionamiento de los sistemas (debido a factores como el contexto de adquisición) son especialmente notorias, las redes de deep learning son susceptibles de sufrir degradación en el rendimiento. Mientras que la solución a este tipo de problemas es recurrir a una recolección adicional de imágenes, con su correspondiente proceso de etiquetado, esta dista mucho de ser óptima. La gran cantidad de posibles variaciones que presenta el mundo visual convierten rápido este enfoque en una tarea sin fin. Más aún cuando existen aplicaciones específicas en las que esta acción es difícil, o incluso imposible, de realizar; debido a problemas de costes o de privacidad. Esta tesis propone abordar todos estos problemas usando la perspectiva de la adaptación. Así, la hipótesis central consiste en asumir que es posible utilizar los datos no etiquetados adquiridos durante el funcionamiento para mejorar el rendimiento que se obtendría con sistemas de reconocimiento generales. Para esto, y como prueba de concepto, el campo de estudio de la tesis se restringió al reconocimiento de caras. Esta es una aplicación paradigmática en la cual el contexto de adquisición puede ser especialmente relevante. Este trabajo comienza examinando las diferencias entre algunos de los contextos específicos en los que se puede necesitar el reconocimiento de caras y así como sus efectos en términos de rendimiento. De esta manera, comparamos distintas ba ses de datos (y sus contextos) entre ellas, usando algunos de los descriptores de características más avanzados para así determinar la necesidad real de adaptación. A partir de este punto, pasamos a presentar el nuevo método, que representa la principal contribución de la tesis: el Dynamic Ensemble of SVM (De- SVM). Este método implementa la capacidad de adaptación utilizando un aprendizaje incremental no supervisado en la que sus propias predicciones se usan cómo pseudo-etiquetas durante las actualizaciones (la estrategia de auto-entrenamiento). Los experimentos se realizaron bajo condiciones de vídeo-vigilancia, un ejemplo paradigmático de contexto muy específico en el que los procesos de etiquetado son particularmente complicados. Las ideas claves de De- SVM se probaron en varios sub-problemas del reconocimiento de caras: la verificación de caras y reconocimiento de caras de conjunto cerrado y conjunto abierto. Los resultados muestran un comportamiento prometedor en términos de adquisición de conocimiento así como de robustez contra impostores. Además, este rendimiento es capaz de superar a otros métodos del estado del arte que no poseen esta capacidad de adaptación.[Abstract] In the last decade, deep learning has brought an unprecedented leap forward for computer vision general classification problems. One of the keys to this success is the availability of extensive and wealthy annotated datasets to use as training samples. In some sense, a deep learning network summarises this enormous amount of data into handy vector representations. For this reason, when the differences between training datasets and the data acquired during operation (due to factors such as the acquisition context) are highly marked, end-to-end deep learning methods are susceptible to suffer performance degradation. While the immediate solution to mitigate these problems is to resort to an additional data collection and its correspondent annotation procedure, this solution is far from optimal. The immeasurable possible variations of the visual world can convert the collection and annotation of data into an endless task. Even more when there are specific applications in which this additional action is difficult or simply not possible to perform due to, among other reasons, cost-related problems or privacy issues. This Thesis proposes to tackle all these problems from the adaptation point of view. Thus, the central hypothesis assumes that it is possible to use operational data with almost no supervision to improve the performance we would achieve with general-purpose recognition systems. To do so, and as a proof-of-concept, the field of study of this Thesis is restricted to face recognition, a paradigmatic application in which the context of acquisition can be especially relevant. This work begins by examining the intrinsic differences between some of the face recognition contexts and how they directly affect performance. To do it, we compare different datasets, and their contexts, against each other using some of the most advanced feature representations available to determine the actual need for adaptation. From this point, we move to present the novel method, representing the central contribution of the Thesis: the Dynamic Ensembles of SVM (De-SVM). This method implements the adaptation capabilities by performing unsupervised incremental learning using its own predictions as pseudo-labels for the update decision (the self-training strategy). Experiments are performed under video surveillance conditions, a paradigmatic example of a very specific context in which labelling processes are particularly complicated. The core ideas of De-SVM are tested in different face recognition sub-problems: face verification and, the more complex, general closed- and open-set face recognition. In terms of the achieved results, experiments have shown a promising behaviour in terms of both unsupervised knowledge acquisition and robustness against impostors, surpassing the performances achieved by state-of-the-art non-adaptive methods.Funding and Technical Resources For the successful development of this Thesis, it was necessary to rely on series of indispensable means included in the following list: • Working material, human and financial support primarily by the CITIC and the Computer Architecture Group of the University of A Coruña and CiTIUS of University of Santiago de Compostela, along with a PhD grant funded by Xunta the Galicia and the European Social Fund. • Access to bibliographical material through the library of the University of A Coruña. • Additional funding through the following research projects: State funding by the Ministry of Economy and Competitiveness of Spain (project TIN2017-90135-R MINECO, FEDER)
    • …
    corecore