1,051 research outputs found

    Model-driven Scheduling for Distributed Stream Processing Systems

    Full text link
    Distributed Stream Processing frameworks are being commonly used with the evolution of Internet of Things(IoT). These frameworks are designed to adapt to the dynamic input message rate by scaling in/out.Apache Storm, originally developed by Twitter is a widely used stream processing engine while others includes Flink, Spark streaming. For running the streaming applications successfully there is need to know the optimal resource requirement, as over-estimation of resources adds extra cost.So we need some strategy to come up with the optimal resource requirement for a given streaming application. In this article, we propose a model-driven approach for scheduling streaming applications that effectively utilizes a priori knowledge of the applications to provide predictable scheduling behavior. Specifically, we use application performance models to offer reliable estimates of the resource allocation required. Further, this intuition also drives resource mapping, and helps narrow the estimated and actual dataflow performance and resource utilization. Together, this model-driven scheduling approach gives a predictable application performance and resource utilization behavior for executing a given DSPS application at a target input stream rate on distributed resources.Comment: 54 page

    DCDB Wintermute: Enabling Online and Holistic Operational Data Analytics on HPC Systems

    Full text link
    As we approach the exascale era, the size and complexity of HPC systems continues to increase, raising concerns about their manageability and sustainability. For this reason, more and more HPC centers are experimenting with fine-grained monitoring coupled with Operational Data Analytics (ODA) to optimize efficiency and effectiveness of system operations. However, while monitoring is a common reality in HPC, there is no well-stated and comprehensive list of requirements, nor matching frameworks, to support holistic and online ODA. This leads to insular ad-hoc solutions, each addressing only specific aspects of the problem. In this paper we propose Wintermute, a novel generic framework to enable online ODA on large-scale HPC installations. Its design is based on the results of a literature survey of common operational requirements. We implement Wintermute on top of the holistic DCDB monitoring system, offering a large variety of configuration options to accommodate the varying requirements of ODA applications. Moreover, Wintermute is based on a set of logical abstractions to ease the configuration of models at a large scale and maximize code re-use. We highlight Wintermute's flexibility through a series of practical case studies, each targeting a different aspect of the management of HPC systems, and then demonstrate the small resource footprint of our implementation.Comment: Accepted for publication at the 29th ACM International Symposium on High-Performance Parallel and Distributed Computing (HPDC 2020

    Dynamic optimization of provider-based scheduling for HPC workloads

    Get PDF
    The vast array of cloud providers present in today’s market proffer a suite of High-Performance Computing (HPC) services. However, these offerings are characterized by significant variations in execution times and cost structures. Consequently, selecting the optimal cloud provider and configuring the features of the chosen computing instance (e.g. virtual machines) proves to be a challenging task for users intending to execute HPC workloads. This paper introduces a novel component designed for effortless integration with existing HPC scheduling systems. This module’s primary function is to facilitate the selection of the most appropriate cloud provider for each distinct job, thereby empowering dynamic and adaptive cost-minimization strategies. Through the application of data augmentation techniques and the employment of Continuous Machine Learning, the system is endowed with the capability to operate efficiently with cloud providers that have not been previously utilized. Furthermore, it is capable of tracking the evolution of jobs over time. Our results show that this component can achieve consistent economic savings, based on the quality of the data used in the training phase

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    Design of robust scheduling methodologies for high performance computing

    Get PDF
    Scientific applications are often large, complex, computationally-intensive, and irregular. Loops are often an abundant source of parallelism in scientific applications. Due to the ever-increasing computational needs of scientific applications, high performance computing (HPC) systems have become larger and more complex, offering increased parallelism at multiple hardware levels. Load imbalance, caused by irregular computational load per task and unpredictable computing system characteristics (system variability), often degrades the performance of applications. Besides, perturbations, such as reduced computing power, network latency availability, or failures, can severely impact the performance of the applications. System variability and perturbations are only expected to increase in future extreme-scale computing systems. Extrapolating the current failure rate to Exascale would result in a failure every 20 minutes. Such failure rate and perturbations would render the computing systems unusable. This doctoral thesis improves the performance of computationally-intensive scientific applications on HPC systems via robust load balancing. Robust scheduling ensures and maintains improved load balanced execution under unpredictable application and system characteristics. A number of dynamic loop self-scheduling (DLS) techniques have been introduced and successfully used in scientific applications between the 1980s and 2000s. These DLS techniques are not fault-tolerant as they were originally introduced. In this thesis, we identify three major research questions to achieve robust scheduling (1) How to ensure that the DLS techniques employed in scientific applications today adhere to their original design goals and specifications? (2) How to select a DLS technique that will achieve improved performance under perturbations? (3) How to tolerate perturbations during execution and maintain a load balanced execution on HPC systems? To answer the first question, we reproduced the original experiments that introduced the DLS techniques to verify their present implementation. Simulation is used to reproduce experiments on systems from the past. Realistic simulation induces a similar analysis and conclusions to the analysis of the native results. To this end, we devised an approach for bridging the native and simulative executions of parallel applications on HPC systems. This simulation approach is used to reproduce scheduling experiments on past and present systems to verify the implementation of DLS techniques. Given the multiple levels of parallelism offered by the present HPC systems, we analyzed the load imbalance in scientific applications, from computer vision, astrophysics, and mathematical kernels, at both thread and process levels. This analysis revealed a significant interplay between thread level and process level load balancing. We found that dynamic load balancing at the thread level propagates to the process level and vice versa. However, the best application performance is only achieved by two-level dynamic load balancing. Next, we examined the performance of applications under perturbations. We found that the most robust DLS technique does not deliver the best performance under various perturbations. The most efficient DLS technique changes by changing the application, the system, or perturbations during execution. This signifies the algorithm selection problem in the DLS. We leveraged realistic simulations to address the algorithm selection problem of scheduling under perturbations via a simulation assisted approach (SimAS), which answers the second question. SimAS dynamically selects DLS techniques that improve the performance depending on the application, system, and perturbations during the execution. To answer the third question, we introduced a robust dynamic load balancing (rDLB) approach for the robust self-scheduling of scientific applications under failures (question 3). rDLB proactively reschedules already allocated tasks and requires no detection of perturbations. rDLB tolerates up to P −1 processor failures (P is the number of processors allocated to the application) and boosts the flexibility of applications against nonfatal perturbations, such as reduced availability of resources. This thesis is the first to provide insights into the interplay between thread and process level dynamic load balancing in scientific applications. Verified DLS techniques, SimAS, and rDLB are integrated into an MPI-based dynamic load balancing library (DLS4LB), which supports thirteen DLS techniques, for robust dynamic load balancing of scientific applications on HPC systems. Using the methods devised in this thesis, we improved the performance of scientific applications by up to 21% via two-level dynamic load balancing. Under perturbations, we enhanced their performance by a factor of 7 and their flexibility by a factor of 30. This thesis opens up the horizons into understanding the interplay of load balancing between various levels of software parallelism and lays the ground for robust multilevel scheduling for the upcoming Exascale HPC systems and beyond

    An Approach for Realistically Simulating the Performance of Scientific Applications on High Performance Computing Systems

    Full text link
    Scientific applications often contain large, computationally-intensive, and irregular parallel loops or tasks that exhibit stochastic characteristics. Applications may suffer from load imbalance during their execution on high-performance computing (HPC) systems due to such characteristics. Dynamic loop self-scheduling (DLS) techniques are instrumental in improving the performance of scientific applications on HPC systems via load balancing. Selecting a DLS technique that results in the best performance for different problems and system sizes requires a large number of exploratory experiments. A theoretical model that can be used to predict the scheduling technique that yields the best performance for a given problem and system has not yet been identified. Therefore, simulation is the most appropriate approach for conducting such exploratory experiments with reasonable costs. This work devises an approach to realistically simulate computationally-intensive scientific applications that employ DLS and execute on HPC systems. Several approaches to represent the application tasks (or loop iterations) are compared to establish their influence on the simulative application performance. A novel simulation strategy is introduced, which transforms a native application code into a simulative code. The native and simulative performance of two computationally-intensive scientific applications are compared to evaluate the realism of the proposed simulation approach. The comparison of the performance characteristics extracted from the native and simulative performance shows that the proposed simulation approach fully captured most of the performance characteristics of interest. This work shows and establishes the importance of simulations that realistically predict the performance of DLS techniques for different applications and system configurations

    Understanding ML driven HPC: Applications and Infrastructure

    Full text link
    We recently outlined the vision of "Learning Everywhere" which captures the possibility and impact of how learning methods and traditional HPC methods can be coupled together. A primary driver of such coupling is the promise that Machine Learning (ML) will give major performance improvements for traditional HPC simulations. Motivated by this potential, the ML around HPC class of integration is of particular significance. In a related follow-up paper, we provided an initial taxonomy for integrating learning around HPC methods. In this paper, which is part of the Learning Everywhere series, we discuss "how" learning methods and HPC simulations are being integrated to enhance effective performance of computations. This paper identifies several modes --- substitution, assimilation, and control, in which learning methods integrate with HPC simulations and provide representative applications in each mode. This paper discusses some open research questions and we hope will motivate and clear the ground for MLaroundHPC benchmarks.Comment: Invited talk to "Visionary Track" at IEEE eScience 2019. arXiv admin note: text overlap with arXiv:1806.04731 by other author

    Parallel Programming with Migratable Objects: Charm++ in Practice

    Get PDF
    The advent of petascale computing has introduced new challenges (e.g. Heterogeneity, system failure) for programming scalable parallel applications. Increased complexity and dynamism in science and engineering applications of today have further exacerbated the situation. Addressing these challenges requires more emphasis on concepts that were previously of secondary importance, including migratability, adaptivity, and runtime system introspection. In this paper, we leverage our experience with these concepts to demonstrate their applicability and efficacy for real world applications. Using the CHARM++ parallel programming framework, we present details on how these concepts can lead to development of applications that scale irrespective of the rough landscape of supercomputing technology. Empirical evaluation presented in this paper spans many miniapplications and real applications executed on modern supercomputers including Blue Gene/Q, Cray XE6, and Stampede
    corecore