12,348 research outputs found

    Resource-Constrained Adaptive Search and Tracking for Sparse Dynamic Targets

    Full text link
    This paper considers the problem of resource-constrained and noise-limited localization and estimation of dynamic targets that are sparsely distributed over a large area. We generalize an existing framework [Bashan et al, 2008] for adaptive allocation of sensing resources to the dynamic case, accounting for time-varying target behavior such as transitions to neighboring cells and varying amplitudes over a potentially long time horizon. The proposed adaptive sensing policy is driven by minimization of a modified version of the previously introduced ARAP objective function, which is a surrogate function for mean squared error within locations containing targets. We provide theoretical upper bounds on the performance of adaptive sensing policies by analyzing solutions with oracle knowledge of target locations, gaining insight into the effect of target motion and amplitude variation as well as sparsity. Exact minimization of the multi-stage objective function is infeasible, but myopic optimization yields a closed-form solution. We propose a simple non-myopic extension, the Dynamic Adaptive Resource Allocation Policy (D-ARAP), that allocates a fraction of resources for exploring all locations rather than solely exploiting the current belief state. Our numerical studies indicate that D-ARAP has the following advantages: (a) it is more robust than the myopic policy to noise, missing data, and model mismatch; (b) it performs comparably to well-known approximate dynamic programming solutions but at significantly lower computational complexity; and (c) it improves greatly upon non-adaptive uniform resource allocation in terms of estimation error and probability of detection.Comment: 49 pages, 1 table, 11 figure

    Stochastic Analysis of the LMS Algorithm for System Identification with Subspace Inputs

    Get PDF
    This paper studies the behavior of the low rank LMS adaptive algorithm for the general case in which the input transformation may not capture the exact input subspace. It is shown that the Independence Theory and the independent additive noise model are not applicable to this case. A new theoretical model for the weight mean and fluctuation behaviors is developed which incorporates the correlation between successive data vectors (as opposed to the Independence Theory model). The new theory is applied to a network echo cancellation scheme which uses partial-Haar input vector transformations. Comparison of the new model predictions with Monte Carlo simulations shows good-to-excellent agreement, certainly much better than predicted by the Independence Theory based model available in the literature

    Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism

    Get PDF
    Testing for the significance of a subset of regression coefficients in a linear model, a staple of statistical analysis, goes back at least to the work of Fisher who introduced the analysis of variance (ANOVA). We study this problem under the assumption that the coefficient vector is sparse, a common situation in modern high-dimensional settings. Suppose we have pp covariates and that under the alternative, the response only depends upon the order of p1αp^{1-\alpha} of those, 0α10\le\alpha\le1. Under moderate sparsity levels, that is, 0α1/20\le\alpha\le1/2, we show that ANOVA is essentially optimal under some conditions on the design. This is no longer the case under strong sparsity constraints, that is, α>1/2\alpha>1/2. In such settings, a multiple comparison procedure is often preferred and we establish its optimality when α3/4\alpha\geq3/4. However, these two very popular methods are suboptimal, and sometimes powerless, under moderately strong sparsity where 1/2<α<3/41/2<\alpha<3/4. We suggest a method based on the higher criticism that is powerful in the whole range α>1/2\alpha>1/2. This optimality property is true for a variety of designs, including the classical (balanced) multi-way designs and more modern "p>np>n" designs arising in genetics and signal processing. In addition to the standard fixed effects model, we establish similar results for a random effects model where the nonzero coefficients of the regression vector are normally distributed.Comment: Published in at http://dx.doi.org/10.1214/11-AOS910 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Higher criticism for detecting sparse heterogeneous mixtures

    Full text link
    Higher criticism, or second-level significance testing, is a multiple-comparisons concept mentioned in passing by Tukey. It concerns a situation where there are many independent tests of significance and one is interested in rejecting the joint null hypothesis. Tukey suggested comparing the fraction of observed significances at a given \alpha-level to the expected fraction under the joint null. In fact, he suggested standardizing the difference of the two quantities and forming a z-score; the resulting z-score tests the significance of the body of significance tests. We consider a generalization, where we maximize this z-score over a range of significance levels 0<\alpha\leq\alpha_0. We are able to show that the resulting higher criticism statistic is effective at resolving a very subtle testing problem: testing whether n normal means are all zero versus the alternative that a small fraction is nonzero. The subtlety of this ``sparse normal means'' testing problem can be seen from work of Ingster and Jin, who studied such problems in great detail. In their studies, they identified an interesting range of cases where the small fraction of nonzero means is so small that the alternative hypothesis exhibits little noticeable effect on the distribution of the p-values either for the bulk of the tests or for the few most highly significant tests. In this range, when the amplitude of nonzero means is calibrated with the fraction of nonzero means, the likelihood ratio test for a precisely specified alternative would still succeed in separating the two hypotheses.Comment: Published by the Institute of Mathematical Statistics (http://www.imstat.org) in the Annals of Statistics (http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000026

    Adaptive channel selection for DOA estimation in MIMO radar

    Full text link
    We present adaptive strategies for antenna selection for Direction of Arrival (DoA) estimation of a far-field source using TDM MIMO radar with linear arrays. Our treatment is formulated within a general adaptive sensing framework that uses one-step ahead predictions of the Bayesian MSE using a parametric family of Weiss-Weinstein bounds that depend on previous measurements. We compare in simulations our strategy with adaptive policies that optimize the Bobrovsky- Zaka{\i} bound and the Expected Cram\'er-Rao bound, and show the performance for different levels of measurement noise.Comment: Submitted to the 25th European Signal Processing Conference (EUSIPCO), 201
    corecore