615 research outputs found

    Shakeout: A New Approach to Regularized Deep Neural Network Training

    Full text link
    Recent years have witnessed the success of deep neural networks in dealing with a plenty of practical problems. Dropout has played an essential role in many successful deep neural networks, by inducing regularization in the model training. In this paper, we present a new regularized training approach: Shakeout. Instead of randomly discarding units as Dropout does at the training stage, Shakeout randomly chooses to enhance or reverse each unit's contribution to the next layer. This minor modification of Dropout has the statistical trait: the regularizer induced by Shakeout adaptively combines L0L_0, L1L_1 and L2L_2 regularization terms. Our classification experiments with representative deep architectures on image datasets MNIST, CIFAR-10 and ImageNet show that Shakeout deals with over-fitting effectively and outperforms Dropout. We empirically demonstrate that Shakeout leads to sparser weights under both unsupervised and supervised settings. Shakeout also leads to the grouping effect of the input units in a layer. Considering the weights in reflecting the importance of connections, Shakeout is superior to Dropout, which is valuable for the deep model compression. Moreover, we demonstrate that Shakeout can effectively reduce the instability of the training process of the deep architecture.Comment: Appears at T-PAMI 201

    High-Fidelity Image Compression with Score-based Generative Models

    Full text link
    Despite the tremendous success of diffusion generative models in text-to-image generation, replicating this success in the domain of image compression has proven difficult. In this paper, we demonstrate that diffusion can significantly improve perceptual quality at a given bit-rate, outperforming state-of-the-art approaches PO-ELIC and HiFiC as measured by FID score. This is achieved using a simple but theoretically motivated two-stage approach combining an autoencoder targeting MSE followed by a further score-based decoder. However, as we will show, implementation details matter and the optimal design decisions can differ greatly from typical text-to-image models

    Learning to sample from noise with deep generative models

    Full text link
    L’apprentissage automatique et spécialement l’apprentissage profond se sont imposés ces dernières années pour résoudre une large variété de tâches. Une des applications les plus remarquables concerne la vision par ordinateur. Les systèmes de détection ou de classification ont connu des avancées majeurs grâce a l’apprentissage profond. Cependant, il reste de nombreux obstacles à une compréhension du monde similaire aux être vivants. Ces derniers n’ont pas besoin de labels pour classifier, pour extraire des caractéristiques du monde réel. L’apprentissage non supervisé est un des axes de recherche qui se concentre sur la résolution de ce problème. Dans ce mémoire, je présente un nouveau moyen d’entrainer des réseaux de neurones de manière non supervisée. Je présente une méthode permettant d’échantillonner de manière itérative a partir de bruit afin de générer des données qui se rapprochent des données d’entrainement. Cette procédure itérative s’appelle l’entrainement par infusion qui est une nouvelle approche permettant d’apprendre l’opérateur de transition d’une chaine de Markov. Dans le premier chapitre, j’introduis des bases concernant l’apprentissage automatique et la théorie des probabilités. Dans le second chapitre, j’expose les modèles génératifs qui ont inspiré ce travail. Dans le troisième et dernier chapitre, je présente comment améliorer l’échantillonnage dans les modèles génératifs avec l’entrainement par infusion.Machine learning and specifically deep learning has made significant breakthroughs in recent years concerning different tasks. One well known application of deep learning is computer vision. Tasks such as detection or classification are nearly considered solved by the community. However, training state-of-the-art models for such tasks requires to have labels associated to the data we want to classify. A more general goal is, similarly to animal brains, to be able to design algorithms that can extract meaningful features from data that aren’t labeled. Unsupervised learning is one of the axes that try to solve this problem. In this thesis, I present a new way to train a neural network as a generative model capable of generating quality samples (a task akin to imagining). I explain how by starting from noise, it is possible to get samples which are close to the training data. This iterative procedure is called Infusion training and is a novel approach to learning the transition operator of a generative Markov chain. In the first chapter, I present some background about machine learning and probabilistic models. The second chapter presents generative models that inspired this work. The third and last chapter presents and investigates our novel approach to learn a generative model with Infusion training

    Adapt and Diffuse: Sample-adaptive Reconstruction via Latent Diffusion Models

    Full text link
    Inverse problems arise in a multitude of applications, where the goal is to recover a clean signal from noisy and possibly (non)linear observations. The difficulty of a reconstruction problem depends on multiple factors, such as the structure of the ground truth signal, the severity of the degradation, the implicit bias of the reconstruction model and the complex interactions between the above factors. This results in natural sample-by-sample variation in the difficulty of a reconstruction task, which is often overlooked by contemporary techniques. Recently, diffusion-based inverse problem solvers have established new state-of-the-art in various reconstruction tasks. However, they have the drawback of being computationally prohibitive. Our key observation in this paper is that most existing solvers lack the ability to adapt their compute power to the difficulty of the reconstruction task, resulting in long inference times, subpar performance and wasteful resource allocation. We propose a novel method that we call severity encoding, to estimate the degradation severity of noisy, degraded signals in the latent space of an autoencoder. We show that the estimated severity has strong correlation with the true corruption level and can give useful hints at the difficulty of reconstruction problems on a sample-by-sample basis. Furthermore, we propose a reconstruction method based on latent diffusion models that leverages the predicted degradation severities to fine-tune the reverse diffusion sampling trajectory and thus achieve sample-adaptive inference times. We utilize latent diffusion posterior sampling to maintain data consistency with observations. We perform experiments on both linear and nonlinear inverse problems and demonstrate that our technique achieves performance comparable to state-of-the-art diffusion-based techniques, with significant improvements in computational efficiency.Comment: 14 pages, 6 figures, preliminary versio

    Structured Dropout for Weak Label and Multi-Instance Learning and Its Application to Score-Informed Source Separation

    Full text link
    Many success stories involving deep neural networks are instances of supervised learning, where available labels power gradient-based learning methods. Creating such labels, however, can be expensive and thus there is increasing interest in weak labels which only provide coarse information, with uncertainty regarding time, location or value. Using such labels often leads to considerable challenges for the learning process. Current methods for weak-label training often employ standard supervised approaches that additionally reassign or prune labels during the learning process. The information gain, however, is often limited as only the importance of labels where the network already yields reasonable results is boosted. We propose treating weak-label training as an unsupervised problem and use the labels to guide the representation learning to induce structure. To this end, we propose two autoencoder extensions: class activity penalties and structured dropout. We demonstrate the capabilities of our approach in the context of score-informed source separation of music
    • …
    corecore