482 research outputs found

    Real-time UAV Complex Missions Leveraging Self-Adaptive Controller with Elastic Structure

    Full text link
    The expectation of unmanned air vehicles (UAVs) pushes the operation environment to narrow spaces, where the systems may fly very close to an object and perform an interaction. This phase brings the variation in UAV dynamics: thrust and drag coefficient of the propellers might change under different proximity. At the same time, UAVs may need to operate under external disturbances to follow time-based trajectories. Under these challenging conditions, a standard controller approach may not handle all missions with a fixed structure, where there may be a need to adjust its parameters for each different case. With these motivations, practical implementation and evaluation of an autonomous controller applied to a quadrotor UAV are proposed in this work. A self-adaptive controller based on a composite control scheme where a combination of sliding mode control (SMC) and evolving neuro-fuzzy control is used. The parameter vector of the neuro-fuzzy controller is updated adaptively based on the sliding surface of the SMC. The autonomous controller possesses a new elastic structure, where the number of fuzzy rules keeps growing or get pruned based on bias and variance balance. The interaction of the UAV is experimentally evaluated in real time considering the ground effect, ceiling effect and flight through a strong fan-generated wind while following time-based trajectories.Comment: 18 page

    A novel online data-driven algorithm for detecting UAV navigation sensor faults

    No full text
    The use of Unmanned Aerial Vehicles (UAVs) has increased significantly in recent years. On-board integrated navigation sensors are a key component of UAVs' flight control systems and are essential for flight safety. In order to ensure flight safety, timely and effective navigation sensor fault detection capability is required. In this paper, a novel data-driven Adaptive Neuron Fuzzy Inference System (ANFIS)-based approach is presented for the detection of on-board navigation sensor faults in UAVs. Contrary to the classic UAV sensor fault detection algorithms, based on predefined or modelled faults, the proposed algorithm combines an online data training mechanism with the ANFIS-based decision system. The main advantages of this algorithm are that it allows real-time model-free residual analysis from Kalman Filter (KF) estimates and the ANFIS to build a reliable fault detection system. In addition, it allows fast and accurate detection of faults, which makes it suitable for real-time applications. Experimental results have demonstrated the effectiveness of the proposed fault detection method in terms of accuracy and misdetection rate

    RANCANG SISTEM PENGENDALIAN SELF BALANCING PLANT MENGGUNAKAN DUAL MOTOR PROPELLER BERBASIS ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

    Get PDF
    Abstrak Pesawat tanpa awak atau UAV (Unmanned Aerial Vehicle) telah berkembang dengan pesat di berbagai bidang. Sistem tak berawak adalah paltform otonom yang dapat dengan mudah diprogram untuk menjalankan misi dengan atau tanpa campur tangan pilot. Salah satu jenis UAV berdasarkan penggeraknya yang digunakan dalam penelitian ini adalah UAV multirotor di mana sistem penggerak terdiri dari dua buah motor beserta propeller yang biasa disebut dengan dual motors atau twin rotors. Sehubungan dengan ketahanan mekanik dan bahan bakar, kemampuan melayang, dan kegunaannya yang dapat digunakan di dalam ruangan maka UAV jenis ini memiliki peranan yang cukup penting dalam penelitian stabilisasi UAV apabila terdapat beban berlebih, untuk menghinadari kecelakaan di udara maupun untuk mencapai tingkat presisi dan akurasi posisi UAV dengan tepat. Pengontrolan stabilisasi dual motor diterapkan dalam kajian penelitian ini dengan mengontrol kecepatan brushless DC motor agar dapat menyetimbangkan posisi UAV itu sendiri. Metode yang diterapkan adalah metode simulasi plant dengan data sekunder sebagai acuan pengaturan parameter komponen menggunakan aplikasi Matlab 2018a. Pengujian plant secara simulasi menghasilkan nilai ANFIS yang cukup baik dengan nilai waktu naik (tr) = 4.145 s, waktu tunak (ts) = 7.5439 s, simpangan maksimum (Mp) = 0.489 %, dan Ess = 0.000741 %. Kata Kunci: ANFIS, dual motor, self balancing

    Intelligent control of miniature holonomic vertical take-off and landing robot

    Get PDF
    This paper discusses the development of a fuzzy based controller for miniaturized unmanned aerial vehicle (UAV).This controller is designed to control the center-of-gravity (CoG) in a new configuration of coaxial miniaturized flying robot (MFR). The idea is to shift the CoG by controlling two pendulums located in perpendicular directions; each pendulum ends with a small mass. A key feature of this work is that the control algorithm represents the original nonlinear function that describes the dynamics of the proposed system. The controller model incorporates two cascaded subsystems: PD and PI fuzzy logic controllers. These two controllers regulate the attitude and the position of the flying robot, respectively. A model of the proposed controllers has been developed and evaluated in terms of stability and maneuverability. The results show that the presented control system can be used efficiently for the MFR applications

    Neuro-Fuzzy-based Improved IMC for Speed Control of Nonlinear Heavy Duty Vehicles

    Get PDF
    A neuro-fuzzy based improved internal model control (I-IMC) is proposed for speed control of uncertain nonlinear heavy duty vehicle (HDV) as the standard IMC (S-IMC) can’t tackle the nonlinear systems effectively and degrades the performance of HDV system. Adaptive neuro-fuzzy inference system and artificial neural network with adaptive control are used for the design of I-IMC. The proposed control techniques are developed to achieve the better speed tracking performance and robustness of HDV system under the influence of road grade disturbance

    Development of advanced autonomous learning algorithms for nonlinear system identification and control

    Full text link
    Identification of nonlinear dynamical systems, data stream analysis, etc. is usually handled by autonomous learning algorithms like evolving fuzzy and evolving neuro-fuzzy systems (ENFSs). They are characterized by the single-pass learning mode and open structure-property. Such features enable their effective handling of fast and rapidly changing natures of data streams. The underlying bottleneck of ENFSs lies in its design principle, which involves a high number of free parameters (rule premise and rule consequent) to be adapted in the training process. This figure can even double in the case of the type-2 fuzzy system. From this literature gap, a novel ENFS, namely Parsimonious Learning Machine (PALM) is proposed in this thesis. To reduce the number of network parameters significantly, PALM features utilization of a new type of fuzzy rule based on the concept of hyperplane clustering, where it has no rule premise parameters. PALM is proposed in both type-1 and type-2 fuzzy systems where all of them characterize a fully dynamic rule-based system. Thus, it is capable of automatically generating, merging, and tuning the hyperplane-based fuzzy rule in a single-pass manner. Moreover, an extension of PALM, namely recurrent PALM (rPALM), is proposed and adopts the concept of teacher-forcing mechanism in the deep learning literature. The efficacy of both PALM and rPALM have been evaluated through numerical study with data streams and to identify nonlinear unmanned aerial vehicle system. The proposed models showcase significant improvements in terms of computational complexity and the number of required parameters against several renowned ENFSs while attaining comparable and often better predictive accuracy. The ENFSs have also been utilized to develop three autonomous intelligent controllers (AICons) in this thesis. They are namely Generic (G) controller, Parsimonious controller (PAC), and Reduced Parsimonious Controller (RedPAC). All these controllers start operating from scratch with an empty set of fuzzy rules, and no offline training is required. To cope with the dynamic behavior of the plant, these controllers can add, merge or prune the rules on demand. Among three AICons, the G-controller is built by utilizing an advanced incremental learning machine, namely Generic Evolving Neuro-Fuzzy Inference System. The integration of generalized adaptive resonance theory provides a compact structure of the G-controller. Consequently, the faster evolution of structure is witnessed, which lowers its computational cost. Another AICon namely, PAC is rooted with PALM's architecture. Since PALM has a dependency on user-defined thresholds to adapt the structure, these thresholds are replaced with the concept of bias- variance trade-off in PAC. In RedPAC, the network parameters have further reduced in contrast with PALM-based PAC, where the number of consequent parameters has reduced to one parameter per rule. These AICons work with very minor expert domain knowledge and developed by incorporating the sliding mode control technique. In G-controller and RedPAC, the control law and adaptation laws for the consequent parameters are derived from the SMC algorithm to establish a stable closed-loop system, where the stability of these controllers are guaranteed by using the Lyapunov function and the uniform asymptotic convergence of tracking error to zero is witnessed through the implication of an auxiliary robustifying control term. While using PAC, the boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Their efficacy is evaluated by observing various trajectory tracking performance of unmanned aerial vehicles. The accuracy of these controllers is comparable or better than the benchmark controllers where the proposed controllers incur significantly fewer parameters to attain similar or better tracking performance

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201
    • 

    corecore