664 research outputs found

    Disturbance observer-based neural network control of cooperative multiple manipulators with input saturation

    Get PDF
    In this paper, the complex problems of internal forces and position control are studied simultaneously and a disturbance observer-based radial basis function neural network (RBFNN) control scheme is proposed to: 1) estimate the unknown parameters accurately; 2) approximate the disturbance experienced by the system due to input saturation; and 3) simultaneously improve the robustness of the system. More specifically, the proposed scheme utilizes disturbance observers, neural network (NN) collaborative control with an adaptive law, and full state feedback. Utilizing Lyapunov stability principles, it is shown that semiglobally uniformly bounded stability is guaranteed for all controlled signals of the closed-loop system. The effectiveness of the proposed controller as predicted by the theoretical analysis is verified by comparative experimental studies

    AI based Robot Safe Learning and Control

    Get PDF
    Introduction This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities
    • …
    corecore