1,041 research outputs found

    An Adaptive Dynamic Surface Controller for Ultralow Altitude Airdrop Flight Path Angle with Actuator Input Nonlinearity

    Get PDF
    In the process of ultralow altitude airdrop, many factors such as actuator input dead-zone, backlash, uncertain external atmospheric disturbance, and model unknown nonlinearity affect the precision of trajectory tracking. In response, a robust adaptive neural network dynamic surface controller is developed. As a result, the aircraft longitudinal dynamics with actuator input nonlinearity is derived; the unknown nonlinear model functions are approximated by means of the RBF neural network. Also, an adaption strategy is used to achieve robustness against model uncertainties. Finally, it has been proved that all the signals in the closed-loop system are bounded and the tracking error converges to a small residual set asymptotically. Simulation results demonstrate the perfect tracking performance and strong robustness of the proposed method, which is not only applicable to the actuator with input dead-zone but also suitable for the backlash nonlinearity. At the same time, it can effectively overcome the effects of dead-zone and the atmospheric disturbance on the system and ensure the fast track of the desired flight path angle instruction, which overthrows the assumption that system functions must be known

    Neural networks-based robust adaptive flight path tracking control of large transport

    Get PDF
    For the ultralow altitude airdrop decline stage, many factors such as  actuator nonlinearity, the uncertain atmospheric disturbances, and model  unknown nonlinearity affect the precision of trajectory tracking. A robust  adaptive neural network dynamic surface control method is proposed. The  neural network is used to approximate unknown nonlinear continuous  functions of the model, and a nonlinear robust term is introduced to  eliminate the actuator’s nonlinear modeling error and external disturbances. From Lyapunov stability theorem, it is rigorously proved that all the signals in the closed-loop system are bounded. Simulation results confirm the perfect tracking performance and strong robustness of the proposed method

    Adaptive NN Control for Multisteering Plane Aircraft with Dead Zone or Backlash Input Nonlinearity

    Get PDF
    Considering that many factors such as actuator input dead zone, backlash, and external disturbance could affect the exactness of trajectory tracking, therewith a robust adaptive neural network control scheme on the basis of control allocation is proposed for the sake of tracking control of multisteering plane aircraft with actuator input dead zone or backlash nonlinearity. First of all, an actuator input dead zone or backlash nonlinearity control assignment model is established and the control allocation equation is derived. Secondly, the system nonlinear uncertainty is compensated by means of radial basis function neural network, and a robust term is introduced to achieve robustness against external disturbance and system errors. Finally, by utilizing Lyapunov stability theorem, it has been proved that all the signals in the closed-loop system are bounded, and the tracking error converges to a small residual set asymptotically. Simulation results on ICE101 multisteering plane aircraft demonstrate the outstanding tracking performance and strong robustness as well as effectiveness of the proposed approach, which can effectively overcome the adverse influence of dead zone, backlash nonlinearity, and external disturbance on the system

    Adaptive Control of Truss Structures for Gossamer Spacecraft

    Get PDF
    Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    NONLINEAR ADAPTIVE HEADING CONTROL FOR AN UNDERACTUATED SURFACE VESSEL WITH CONSTRAINED INPUT AND SIDESLIP ANGLE COMPENSATION

    Get PDF
    In this paper, a nonlinear adaptive heading controller is developed for an underactuated surface vessel with constrained input and sideslip angle compensation. The controller design is accomplished in a framework of backstepping technique. First, to amend the irrationality of the traditional definition of the desired heading, the desired heading is compensated by the sideslip angle. Considering the actuator physical constrain, a hyperbolic tangent function and a Nussbaum function are introduced to handle the nonlinear part of control input. The error and the disturbance are estimated and compensated by an adaptive control law. In addition, to avoid the complicated calculation of time derivatives of the virtual control, the command filter is introduced to integrate with the control law. It is analysed by the Lyapunov theory that the closed loop system is guaranteed to be uniformly ultimately bounded stability. Finally, the simulation studies illustrate the effectiveness of the proposed control method
    corecore