211 research outputs found

    A one-parameter family of interpolating kernels for Smoothed Particle Hydrodynamics studies

    Full text link
    A set of interpolating functions of the type f(v)={(sin[v pi/2])/(v pi/2)}^n is analyzed in the context of the smoothed-particle hydrodynamics (SPH) technique. The behaviour of these kernels for several values of the parameter n has been studied either analytically as well as numerically in connection with several tests carried out in two dimensions. The main advantage of this kernel relies in its flexibility because for n=3 it is similar to the standard widely used cubic-spline, whereas for n>3 the interpolating function becomes more centrally condensed, being well suited to track discontinuities such as shock fronts and thermal waves.Comment: 36 pages, 12 figures (low-resolution), published in J.C.

    rpSPH: a novel Smoothed Particle Hydrodynamics Algorithm

    Full text link
    We suggest a novel discretisation of the momentum equation for Smoothed Particle Hydrodynamics (SPH) and show that it significantly improves the accuracy of the obtained solutions. Our new formulation which we refer to as relative pressure SPH, rpSPH, evaluates the pressure force in respect to the local pressure. It respects Newtons first law of motion and applies forces to particles only when there is a net force acting upon them. This is in contrast to standard SPH which explicitly uses Newtons third law of motion continuously applying equal but opposite forces between particles. rpSPH does not show the unphysical particle noise, the clumping or banding instability, unphysical surface tension, and unphysical scattering of different mass particles found for standard SPH. At the same time it uses fewer computational operations. and only changes a single line in existing SPH codes. We demonstrate its performance on isobaric uniform density distributions, uniform density shearing flows, the Kelvin-Helmholtz and Rayleigh-Taylor instabilities, the Sod shock tube, the Sedov-Taylor blast wave and a cosmological integration of the Santa Barbara galaxy cluster formation test. rpSPH is an improvement these cases. The improvements come at the cost of giving up exact momentum conservation of the scheme. Consequently one can also obtain unphysical solutions particularly at low resolutions.Comment: 17 pages, 13 figures. Final version. Including section of how to break i

    Hydrodynamic capabilities of an SPH code incorporating an artificial conductivity term with a gravity-based signal velocity

    Get PDF
    This paper investigates the hydrodynamic performances of an SPH code incorporating an artificial heat conductivity term in which the adopted signal velocity is applicable when gravity is present. In accordance with previous findings it is shown that the performances of SPH to describe the development of Kelvin-Helmholtz instabilities depend strongly on the consistency of the initial condition set-up and on the leading error in the momentum equation due to incomplete kernel sampling. An error and stability analysis shows that the quartic B-spline kernel (M_5) possesses very good stability properties and we propose its use with a large neighbor number, between ~50 (2D) to ~ 100 (3D), to improve convergence in simulation results without being affected by the so-called clumping instability. SPH simulations of the blob test show that in the regime of strong supersonic flows an appropriate limiting condition, which depends on the Prandtl number, must be imposed on the artificial conductivity SPH coefficients in order to avoid an unphysical amount of heat diffusion. Results from hydrodynamic simulations that include self-gravity show profiles of hydrodynamic variables that are in much better agreement with those produced using mesh-based codes. In particular, the final levels of core entropies in cosmological simulations of galaxy clusters are consistent with those found using AMR codes. Finally, results of the Rayleigh-Taylor instability test demonstrate that in the regime of very subsonic flows the code has still several difficulties in the treatment of hydrodynamic instabilities. These problems being intrinsically due to the way in which in standard SPH gradients are calculated and not to the implementation of the artificial conductivity term.Comment: 26 pages, 15 figures, accepted for publication in A&

    Boosting the accuracy of SPH techniques: Newtonian and special-relativistic tests

    Full text link
    We study the impact of different discretization choices on the accuracy of SPH and we explore them in a large number of Newtonian and special-relativistic benchmark tests. As a first improvement, we explore a gradient prescription that requires the (analytical) inversion of a small matrix. For a regular particle distribution this improves gradient accuracies by approximately ten orders of magnitude and the SPH formulations with this gradient outperform the standard approach in all benchmark tests. Second, we demonstrate that a simple change of the kernel function can substantially increase the accuracy of an SPH scheme. While the "standard" cubic spline kernel generally performs poorly, the best overall performance is found for a high-order Wendland kernel which allows for only very little velocity noise and enforces a very regular particle distribution, even in highly dynamical tests. Third, we explore new SPH volume elements that enhance the treatment of fluid instabilities and, last, but not least, we design new dissipation triggers. They switch on near shocks and in regions where the flow --without dissipation-- starts to become noisy. The resulting new SPH formulation yields excellent results even in challenging tests where standard techniques fail completely.Comment: accepted for publication in MNRA
    corecore