1,003 research outputs found

    Data-Driven Robust Control of Unknown MIMO Nonlinear System Subject to Input Saturations and Disturbances

    Get PDF
    This paper presented a new data-driven robust control scheme for unknown nonlinear systems in the presence of input saturation and external disturbances. According to the input and output data of the nonlinear system, a recurrent neural network (RNN) data-driven model is established to reconstruct the dynamics of the nonlinear system. An adaptive output-feedback controller is developed to approximate the unknown disturbances and a novel input saturation compensation method is used to attenuate the effect of the input saturation. Under the proposed adaptive control scheme, the uniformly ultimately bounded convergence of all the signals of the closed-loop nonlinear system is guaranteed via Lyapunov analysis. The simulation results are given to show the effectiveness of the proposed data-driven robust controller

    Asymmetric bounded neural control for an uncertain robot by state feedback and output feedback

    Get PDF
    In this paper, an adaptive neural bounded control scheme is proposed for an n-link rigid robotic manipulator with unknown dynamics. With the combination of the neural approximation and backstepping technique, an adaptive neural network control policy is developed to guarantee the tracking performance of the robot. Different from the existing results, the bounds of the designed controller are known a priori, and they are determined by controller gains, making them applicable within actuator limitations. Furthermore, the designed controller is also able to compensate the effect of unknown robotic dynamics. Via the Lyapunov stability theory, it can be proved that all the signals are uniformly ultimately bounded. Simulations are carried out to verify the effectiveness of the proposed scheme

    Input Constrained M-MRAC for Multirotors Operating in an Urban Environment

    Get PDF
    The paper presents a modified model reference adaptive control (M-MRAC) for multi-input multi-output nonlinear dynamical systems with time varying parametric uncertainties and bounded external disturbances. It uses a prediction model to rapidly generate adaptive estimates of the system's uncertainties with adjustable errors that converge to a small neighborhood of the origin. A sufficient condition is derived to specify the region of attraction in the space of initialization errors, design parameters and external commends. The approach is applied to thrust controlled multi-rotor air vehicles operating in an urban environment. It is shown that the designed controller can provide a good tracking of a given trajectory in the unknown urban wind field, assuming that the maximum thrust generated by the rotors is known. The performance of the algorithms are demonstrated in simulations

    NONLINEAR ADAPTIVE HEADING CONTROL FOR AN UNDERACTUATED SURFACE VESSEL WITH CONSTRAINED INPUT AND SIDESLIP ANGLE COMPENSATION

    Get PDF
    In this paper, a nonlinear adaptive heading controller is developed for an underactuated surface vessel with constrained input and sideslip angle compensation. The controller design is accomplished in a framework of backstepping technique. First, to amend the irrationality of the traditional definition of the desired heading, the desired heading is compensated by the sideslip angle. Considering the actuator physical constrain, a hyperbolic tangent function and a Nussbaum function are introduced to handle the nonlinear part of control input. The error and the disturbance are estimated and compensated by an adaptive control law. In addition, to avoid the complicated calculation of time derivatives of the virtual control, the command filter is introduced to integrate with the control law. It is analysed by the Lyapunov theory that the closed loop system is guaranteed to be uniformly ultimately bounded stability. Finally, the simulation studies illustrate the effectiveness of the proposed control method

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance

    Adaptive Control of Unknown Pure Feedback Systems with Pure State Constraints

    Full text link
    This paper deals with the tracking control problem for a class of unknown pure feedback system with pure state constraints on the state variables and unknown time-varying bounded disturbances. An adaptive controller is presented for such systems for the very first time. The controller is designed using the backstepping method. While designing it, Barrier Lyapunov Functions is used so that the state variables do not contravene its constraints. In order to cope with the unknown dynamics of the system, an online approximator is designed using a neural network with a novel adaptive law for its weight update. In the stability analysis of the system, the time derivative of Lyapunov function involves known virtual control coefficient with unknown direction and to deal with such problem Nussbaum gain is used to design the control law. Furthermore, to make the controller robust and computationally inexpensive, a novel disturbance observer is designed to estimate the disturbance along with neural network approximation error and the time derivative of virtual control input. The effectiveness of the proposed approach is demonstrated through a simulation study on the third-order nonlinear system

    Finite-Time Tracking Control for a Class of MIMO Nonlinear Systems with Unknown Asymmetric Saturations

    Get PDF
    This paper addresses the problem of finite-time tracking control for multiple-input and multiple-output (MIMO) nonlinear systems with asymmetric saturations. A systematic approach is proposed to eliminate the effects of unmeasured external disturbances and unknown asymmetric saturations. In the proposed control strategy, a terminal sliding mode disturbance observer is provided to estimate the augmented disturbance (which contains the unknown asymmetric input saturation and external disturbance). The approximation error of the augmented disturbance can converge to zero in a fixed finite-time interval. Furthermore, a novel finite-time tracking control algorithm is developed to guarantee fast convergence of the tracking error. Compared with the existing results on finite-time tracking control, the chattering problem and the input saturation problem can be solved in a unified framework. Several simulations are given to demonstrate the effectiveness of the proposed approach

    Composite adaptive locally weighted learning control for multi-constraint nonlinear systems

    Get PDF
    A composite adaptive locally weighted learning (LWL) control approach is proposed for a class of uncertain nonlinear systems with system constraints, including state constraints and asymmetric control saturation in this paper. The system constraints are tackled by considering the control input as an extended state variable and introducing barrier Lyapunov functions (BLFs) into the backstepping procedure. The system uncertainty is approximated by a composite adaptive LWL neural networks (NNs), where a prediction error is constructed via a series-parallel identification model, and NN weights are updated by both the tracking error and the prediction error. The update law with composite error feedback improves uncertainty approximation accuracy and trajectory tracking accuracy. The feasibility and effectiveness of the proposed approach have been demonstrated by formal proof and simulation results

    Admittance-based controller design for physical human-robot interaction in the constrained task space

    Get PDF
    In this article, an admittance-based controller for physical human-robot interaction (pHRI) is presented to perform the coordinated operation in the constrained task space. An admittance model and a soft saturation function are employed to generate a differentiable reference trajectory to ensure that the end-effector motion of the manipulator complies with the human operation and avoids collision with surroundings. Then, an adaptive neural network (NN) controller involving integral barrier Lyapunov function (IBLF) is designed to deal with tracking issues. Meanwhile, the controller can guarantee the end-effector of the manipulator limited in the constrained task space. A learning method based on the radial basis function NN (RBFNN) is involved in controller design to compensate for the dynamic uncertainties and improve tracking performance. The IBLF method is provided to prevent violations of the constrained task space. We prove that all states of the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB) by utilizing the Lyapunov stability principles. At last, the effectiveness of the proposed algorithm is verified on a Baxter robot experiment platform. Note to Practitioners-This work is motivated by the neglect of safety in existing controller design in physical human-robot interaction (pHRI), which exists in industry and services, such as assembly and medical care. It is considerably required in the controller design for rigorously handling constraints. Therefore, in this article, we propose a novel admittance-based human-robot interaction controller. The developed controller has the following functionalities: 1) ensuring reference trajectory remaining in the constrained task space: A differentiable reference trajectory is shaped by the desired admittance model and a soft saturation function; 2) solving uncertainties of robotic dynamics: A learning approach based on radial basis function neural network (RBFNN) is involved in controller design; and 3) ensuring the end-effector of the manipulator remaining in the constrained task space: different from other barrier Lyapunov function (BLF), integral BLF (IBLF) is proposed to constrain system output directly rather than tracking error, which may be more convenient for controller designers. The controller can be potentially applied in many areas. First, it can be used in the rehabilitation robot to avoid injuring the patient by limiting the motion. Second, it can ensure the end-effector of the industrial manipulator in a prescribed task region. In some industrial tasks, dangerous or damageable tools are mounted on the end-effector, and it will hurt humans and bring damage to the robot when the end-effector is out of the prescribed task region. Third, it may bring a new idea to the designed controller for avoiding collisions in pHRI when collisions occur in the prescribed trajectory of end-effector

    SATURATED AND ASYMMETRIC SATURATED IMPULSIVE CONTROL SYNCHRONIZATION OF COUPLED DELAYED INERTIAL NEURAL NETWORKS WITH TIME-VARYING DELAYS

    Get PDF
    This paper considers control systems with impulses that are saturated and asymmetrically saturated which are used to examine the synchronization of inertial neural networks (INNs) with time-varying delay and coupling delays. Under the theoretical discussions, mixed delays, such as transmission delay and coupling delay are presented for inertial neural networks. The addressed INNs are transformed into first order differential equations utilizing variable transformation on INNs and then certain adequate conditions are derived for the exponential synchronization of the addressed model by substituting saturation nonlinearity with a dead-zone function. In addition, an asymmetric saturated impulsive control approach is given to realize the exponential synchronization of addressed INNs in the leader-following synchronization pattern. Finally, simulation results are used to validate the theoretical research findings
    corecore