4 research outputs found

    Neural Network-Based Adaptive Control for Spacecraft Under Actuator Failures and Input Saturations

    Get PDF
    In this article, we develop attitude tracking control methods for spacecraft as rigid bodies against model uncertainties, external disturbances, subsystem faults/failures, and limited resources. A new intelligent control algorithm is proposed using approximations based on radial basis function neural networks (RBFNNs) and adopting the tunable parameter-based variable structure (TPVS) control techniques. By choosing different adaptation parameters elaborately, a series of control strategies are constructed to handle the challenging effects due to actuator faults/failures and input saturations. With the help of the Lyapunov theory, we show that our proposed methods guarantee both finite-time convergence and fault-tolerance capability of the closed-loop systems. Finally, benefits of the proposed control methods are illustrated through five numerical examples

    Integrated fault-tolerant control approach for linear time-delay systems using a dynamic event-triggered mechanism

    Get PDF
    In this study, a novel integrated fault estimation (FE) and fault-tolerant control (FTC) design approach is developed for a system with time-varying delays and additive fault based on a dynamic event-triggered communication mechanism. The traditional static event-triggered mechanism is modified by adding an internal dynamic variable to increase the inter-event interval and decrease the amount of data transmission. Then, a dynamical observer is designed to estimate both the system state and the unknown fault signal simultaneously. A fault estimation-based FTC approach is then given to remove the effects generated by unknown actuator faults, which guarantees that the faulty closed-loop systems are asymptotical stable with a disturbance attenuation level γ. By theory analysis, the Zeno phenomenon is excluded in this study. Finally, a real aircraft engine example is provided to illustrate the feasibility of the proposed integrated FE and FTC method

    Adaptive non-singular fast terminal sliding mode control and synchronization of a chaotic system via interval type-2 fuzzy inference system with proportionate controller

    Get PDF
    This paper introduces a novel adaptive nonsingular fast terminal sliding mode approach that benefits from an interval type-2 fuzzy logic estimator and a gain for control and synchronization of chaotic systems in the presence of uncertainty. The nonsingular fast terminal sliding mode controller is developed to increase the convergence rate and remove the singularity problem of the system. Using the proposed method, the finite-time convergence has been ensured. To eliminate the chattering phenomenon in the conventional sliding mode controller, the discontinuous sign function is estimated using an interval type-2 fuzzy inference system (FIS) based on the center of sets type reduction followed by defuzzification. By adding the proportionate gain to the interval type-2 FIS, the robustness and speed of the controller system is enhanced. An appropriate Lyapunov function is utilized to ensure the closed-loop stability of the control system. The performance of the controller is evaluated for a nonlinear time-varying second-order magnetic space-craft chaotic system with different initial conditions in the presence of uncertainty. The simulation results show the efficacy of the proposed approach for the tracking control problems. The time and frequency domain analysis of the control signal demonstrates that the chattering phenomenon is successfully diminished

    Adaptive NFTSM-Based Fault Tolerant Control for a Class of Nonlinear System With Actuator Fault and Saturation

    No full text
    corecore