321 research outputs found

    Multiservice Vertical Handoff Decision Algorithms

    Get PDF

    Quality of experience aware network selection model for service provisioning in heterogeneous network

    Get PDF
    Heterogeneous wireless networks (HWNs) are capable of integrating the different radio access technologies that make it possible to connect mobile users based on the performance parameters. Further quality of service (QoS) is one of the major topics for HWNs, moreover existing radio access technology (RAT) methodology are designed to provide network QoS criteria. However, limited work has been carried out for the RAT selection mechanism considering user QoS preference and existing models are developed based on the multi-mode terminal under a given minimal density network. For overcoming research issues this paper present quality of experience (QoE) RAT (QOE-RAT) selection methodology, incorporating both network performance criteria and user preference considering multiple call and multi-mode HWNs environment. First, this paper presents fuzzy preference aware weight (FPAW) and multi-mode terminal preference aware TOPSIS (MMTPA-TOPSIS) for choosing the best RAT for gaining multi-services. Experiment outcomes show the QOE-RAT selection method achieves much superior packet transmission outcomes when compared with state-of-art Rat selection methodologies

    PluralisMAC: a generic multi-MAC framework for heterogeneous, multiservice wireless networks, applied to smart containers

    Get PDF
    Developing energy-efficient MAC protocols for lightweight wireless systems has been a challenging task for decades because of the specific requirements of various applications and the varying environments in which wireless systems are deployed. Many MAC protocols for wireless networks have been proposed, often custom-made for a specific application. It is clear that one MAC does not fit all the requirements. So, how should a MAC layer deal with an application that has several modes (each with different requirements) or with the deployment of another application during the lifetime of the system? Especially in a mobile wireless system, like Smart Monitoring of Containers, we cannot know in advance the application state (empty container versus stuffed container). Dynamic switching between different energy-efficient MAC strategies is needed. Our architecture, called PluralisMAC, contains a generic multi-MAC framework and a generic neighbour monitoring and filtering framework. To validate the real-world feasibility of our architecture, we have implemented it in TinyOS and have done experiments on the TMote Sky nodes in the w-iLab.t testbed. Experimental results show that dynamic switching between MAC strategies is possible with minimal receive chain overhead, while meeting the various application requirements (reliability and low-energy consumption)

    Fifth ERCIM workshop on e-mobility

    Get PDF

    Artificial Intelligence Empowered UAVs Data Offloading in Mobile Edge Computing

    Get PDF
    The advances introduced by Unmanned Aerial Vehicles (UAVs) are manifold and have paved the path for the full integration of UAVs, as intelligent objects, into the Internet of Things (IoT). This paper brings artificial intelligence into the UAVs data offloading process in a multi-server Mobile Edge Computing (MEC) environment, by adopting principles and concepts from game theory and reinforcement learning. Initially, the autonomous MEC server selection for partial data offloading is performed by the UAVs, based on the theory of the stochastic learning automata. A non-cooperative game among the UAVs is then formulated to determine the UAVs\u27 data to be offloaded to the selected MEC servers, while the existence of at least one Nash Equilibrium (NE) is proven exploiting the power of submodular games. A best response dynamics framework and two alternative reinforcement learning algorithms are introduced that converge to a NE, and their trade-offs are discussed. The overall framework performance evaluation is achieved via modeling and simulation, in terms of its efficiency and effectiveness, under different operation approaches and scenarios

    An intelligent radio access network selection and optimisation system in heterogeneous communication environments

    Get PDF
    PhDThe overlapping of the different wireless network technologies creates heterogeneous communication environments. Future mobile communication system considers the technological and operational services of heterogeneous communication environments. Based on its packet switched core, the access to future mobile communication system will not be restricted to the mobile cellular networks but may be via other wireless or even wired technologies. Such universal access can enable service convergence, joint resource management, and adaptive quality of service. However, in order to realise the universal access, there are still many pending challenges to solve. One of them is the selection of the most appropriate radio access network. Previous work on the network selection has concentrated on serving the requesting user, but the existing users and the consumption of the network resources were not the main focus. Such network selection decision might only be able to benefit a limited number of users while the satisfaction levels of some users are compromised, and the network resources might be consumed in an ineffective way. Solutions are needed to handle the radio access network selection in a manner that both of the satisfaction levels of all users and the network resource consumption are considered. This thesis proposes an intelligent radio access network selection and optimisation system. The work in this thesis includes the proposal of an architecture for the radio access network selection and optimisation system and the creation of novel adaptive algorithms that are employed by the network selection system. The proposed algorithms solve the limitations of previous work and adaptively optimise network resource consumption and implement different policies to cope with different scenarios, network conditions, and aims of operators. Furthermore, this thesis also presents novel network resource availability evaluation models. The proposed models study the physical principles of the considered radio access network and avoid employing assumptions which are too stringent abstractions of real network scenarios. They enable the implementation of call level simulations for the comparison and evaluation of the performance of the network selection and optimisation algorithms

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book
    • …
    corecore