1,479 research outputs found

    Low energy indoor network : deployment optimisation

    Get PDF
    This article considers what the minimum energy indoor access point deployment is in order to achieve a certain downlink quality-of-service. The article investigates two conventional multiple-access technologies, namely: LTE-femtocells and 802.11n Wi-Fi. This is done in a dynamic multi-user and multi-cell interference network. Our baseline results are reinforced by novel theoretical expressions. Furthermore, the work underlines the importance of considering optimisation when accounting for the capacity saturation of realistic modulation and coding schemes. The results in this article show that optimising the location of access points both within a building and within the individual rooms is critical to minimise the energy consumption

    Dynamic reconfiguration technologies based on FPGA in software defined radio system

    Get PDF
    Partial Reconfiguration (PR) is a method for Field Programmable Gate Array (FPGA) designs which allows multiple applications to time-share a portion of an FPGA while the rest of the device continues to operate unaffected. Using this strategy, the physical layer processing architecture in Software Defined Radio (SDR) systems can benefit from reduced complexity and increased design flexibility, as different waveform applications can be grouped into one part of a single FPGA. Waveform switching often means not only changing functionality, but also changing the FPGA clock frequency. However, that is beyond the current functionality of PR processes as the clock components (such as Digital Clock Managers (DCMs)) are excluded from the process of partial reconfiguration. In this paper, we present a novel architecture that combines another reconfigurable technology, Dynamic Reconfigurable Port (DRP), with PR based on a single FPGA in order to dynamically change both functionality and also the clock frequency. The architecture is demonstrated to reduce hardware utilization significantly compared with standard, static FPGA design

    An Opportunistic Error Correction Layer for OFDM Systems

    Get PDF
    In this paper, we propose a novel cross layer scheme to lower power\ud consumption of ADCs in OFDM systems, which is based on resolution\ud adaptive ADCs and Fountain codes. The key part in the new proposed\ud system is that the dynamic range of ADCs can be reduced by\ud discarding the packets which are transmitted over 'bad' sub\ud carriers. Correspondingly, the power consumption in ADCs can be\ud reduced. Also, the new system does not process all the packets but\ud only processes surviving packets. This new error correction layer\ud does not require perfect channel knowledge, so it can be used in a\ud realistic system where the channel is estimated. With this new\ud approach, more than 70% of the energy consumption in the ADC can be\ud saved compared with the conventional IEEE 802.11a WLAN system under\ud the same channel conditions and throughput. The ADC in a receiver\ud can consume up to 50% of the total baseband energy. Moreover, to\ud reduce the overhead of Fountain codes, we apply message passing and\ud Gaussian elimination in the decoder. In this way, the overhead is\ud 3% for a small block size (i.e. 500 packets). Using both methods\ud results in an efficient system with low delay

    Adaptive thresholding based optimal rate and MIMO mode selection scheme for IEEE 802.11n WLAN

    Get PDF
    The emergence of multiple antenna technology in IEEE 802.11n WLAN  has resulted in performance improvement in terms of throughput as well as transmission reliability as compared to legacy standards. Link adaptive transmission is critical to WLAN. Most of the existing algorithms for MIMO mode adaptation (between spatial multiplexing and diversity encoding) use ïŹxed SNR switching thresholds for rate selection. The use of a ïŹxed threshold in both MIMO modes, however, can only provide smaller throughput gain. The present studies on link adaptation do not consider the fundamental characteristic difference in the diversity encoding and spatial multiplexing encoding for MIMO. In this paper we propose a novel adaptive thresholding based optimal rate and MIMO mode (ORMM) algorithm for 802.11n wireless network. The proposed scheme adaptively switches between two SNR switching threshold vectors, separately determined for each MIMO mode analytically. Simulations over the Rayleigh fading channel shows that ORMM outperforms the existing approach of MIMO rate adaptation based on the use of ïŹxed switching thresholds for rate selection

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Adaptive delayed channel access for IEEE 802.11n WLANs

    Get PDF
    Abstract— In this paper we investigate potential benefits that an adaptive delayed channel access algorithm can attain for the next-generation wireless LANs, the IEEE 802.11n. We show that the performance of frame aggregation introduced by the 802.11n adheres due to the priority mechanism of the legacy 802.11e EDCA scheduler, resulting in a poor overall performance. Because high priority flows have low channel utilization, the low priority flows throughputs can be amerced further. By introducing an additional delay at the MAC layer, before the channel access scheduling, it will retain aggregate sizes at higher numbers and consequently a better channel utilization. Also, in order to support both UDP and TCP transport layer protocols, the algorithm’s operational conditions are kept adaptive. The simulation results demonstrate that our proposed adaptive delayed channel access outperforms significantly the current 802.11n specification and non-adaptive delayed channel access
    • 

    corecore