458 research outputs found

    Geometric ergodicity of the Random Walk Metropolis with position-dependent proposal covariance

    Get PDF
    We consider a Metropolis-Hastings method with proposal kernel N(x,hG−1(x))\mathcal{N}(x,hG^{-1}(x)), where xx is the current state. After discussing specific cases from the literature, we analyse the ergodicity properties of the resulting Markov chains. In one dimension we find that suitable choice of G−1(x)G^{-1}(x) can change the ergodicity properties compared to the Random Walk Metropolis case N(x,hΣ)\mathcal{N}(x,h\Sigma), either for the better or worse. In higher dimensions we use a specific example to show that judicious choice of G−1(x)G^{-1}(x) can produce a chain which will converge at a geometric rate to its limiting distribution when probability concentrates on an ever narrower ridge as ∣x∣|x| grows, something which is not true for the Random Walk Metropolis.Comment: 15 pages + appendices, 4 figure

    Non-Reversible Parallel Tempering: a Scalable Highly Parallel MCMC Scheme

    Full text link
    Parallel tempering (PT) methods are a popular class of Markov chain Monte Carlo schemes used to sample complex high-dimensional probability distributions. They rely on a collection of NN interacting auxiliary chains targeting tempered versions of the target distribution to improve the exploration of the state-space. We provide here a new perspective on these highly parallel algorithms and their tuning by identifying and formalizing a sharp divide in the behaviour and performance of reversible versus non-reversible PT schemes. We show theoretically and empirically that a class of non-reversible PT methods dominates its reversible counterparts and identify distinct scaling limits for the non-reversible and reversible schemes, the former being a piecewise-deterministic Markov process and the latter a diffusion. These results are exploited to identify the optimal annealing schedule for non-reversible PT and to develop an iterative scheme approximating this schedule. We provide a wide range of numerical examples supporting our theoretical and methodological contributions. The proposed methodology is applicable to sample from a distribution π\pi with a density LL with respect to a reference distribution π0\pi_0 and compute the normalizing constant. A typical use case is when π0\pi_0 is a prior distribution, LL a likelihood function and π\pi the corresponding posterior.Comment: 74 pages, 30 figures. The method is implemented in an open source probabilistic programming available at https://github.com/UBC-Stat-ML/blangSD
    • …
    corecore