3,709 research outputs found

    EVALUATION OF THE CLUSTERING PERFORMANCE OF AFFINITY PROPAGATION ALGORITHM CONSIDERING THE INFLUENCE OF PREFERENCE PARAMETER AND DAMPING FACTOR

    Get PDF
    The identification of significant underlying data patterns such as image composition and spatial arrangements is fundamental in remote sensing tasks. Therefore, the development of an effective approach for information extraction is crucial to achieve this goal. Affinity propagation (AP) algorithm is a novel powerful technique with the ability of handling with unusual data, containing both categorical and numerical attributes. However, AP has some limitations related to the choice of initial preference parameter, occurrence of oscillations and processing of large data sets. This paper evaluates the clustering performance of AP algorithm taking into account the influence of preference parameter and damping factor. The study was conducted considering the AP algorithm, the adaptive AP and partition AP. According to the experiments, the choice of preference and damping greatly influences on the quality and the final number of clusters

    Adaptive semi-supervised affinity propagation clustering algorithm based on structural similarity

    Get PDF
    Uzimajući u obzir nezadovoljavajuće djelovanje grupiranja srodnog širenja algoritma grupiranja, kada se radi o nizovima podataka složenih struktura, u ovom se radu predlaže prilagodljivi nadzirani algoritam grupiranja srodnog širenja utemeljen na strukturnoj sličnosti (SAAP-SS). Najprije se predlaže nova strukturna sličnost rješavanjem nelinearnog problema zastupljenosti niskoga ranga. Zatim slijedi srodno širenje na temelju podešavanja matrice sličnosti primjenom poznatih udvojenih ograničenja. Na kraju se u postupak algoritma uvodi ideja eksplozija kod vatrometa. Prilagodljivo pretražujući preferencijalni prostor u dva smjera, uravnotežuju se globalne i lokalne pretraživačke sposobnosti algoritma u cilju pronalaženja optimalne strukture grupiranja. Rezultati eksperimenata i sa sintetičkim i s realnim nizovima podataka pokazuju poboljšanja u radu predloženog algoritma u usporedbi s AP, FEO-SAP i K-means metodama.In view of the unsatisfying clustering effect of affinity propagation (AP) clustering algorithm when dealing with data sets of complex structures, an adaptive semi-supervised affinity propagation clustering algorithm based on structural similarity (SAAP-SS) is proposed in this paper. First, a novel structural similarity is proposed by solving a non-linear, low-rank representation problem. Then we perform affinity propagation on the basis of adjusting the similarity matrix by utilizing the known pairwise constraints. Finally, the idea of fireworks explosion is introduced into the process of the algorithm. By adaptively searching the preference space bi-directionally, the algorithm’s global and local searching abilities are balanced in order to find the optimal clustering structure. The results of the experiments with both synthetic and real data sets show performance improvements of the proposed algorithm compared with AP, FEO-SAP and K-means methods

    Clustering large-scale data based on modified affinity propagation algorithm

    Get PDF
    Traditional clustering algorithms are no longer suitable for use in data mining applications that make use of large-scale data. There have been many large-scale data clustering algorithms proposed in recent years, but most of them do not achieve clustering with high quality. Despite that Affinity Propagation (AP) is effective and accurate in normal data clustering, but it is not effective for large-scale data. This paper proposes two methods for large-scale data clustering that depend on a modified version of AP algorithm. The proposed methods are set to ensure both low time complexity and good accuracy of the clustering method. Firstly, a data set is divided into several subsets using one of two methods random fragmentation or K-means. Secondly, subsets are clustered into K clusters using K-Affinity Propagation (KAP) algorithm to select local cluster exemplars in each subset. Thirdly, the inverse weighted clustering

    Spectral redemption: clustering sparse networks

    Get PDF
    Spectral algorithms are classic approaches to clustering and community detection in networks. However, for sparse networks the standard versions of these algorithms are suboptimal, in some cases completely failing to detect communities even when other algorithms such as belief propagation can do so. Here we introduce a new class of spectral algorithms based on a non-backtracking walk on the directed edges of the graph. The spectrum of this operator is much better-behaved than that of the adjacency matrix or other commonly used matrices, maintaining a strong separation between the bulk eigenvalues and the eigenvalues relevant to community structure even in the sparse case. We show that our algorithm is optimal for graphs generated by the stochastic block model, detecting communities all the way down to the theoretical limit. We also show the spectrum of the non-backtracking operator for some real-world networks, illustrating its advantages over traditional spectral clustering.Comment: 11 pages, 6 figures. Clarified to what extent our claims are rigorous, and to what extent they are conjectures; also added an interpretation of the eigenvectors of the 2n-dimensional version of the non-backtracking matri
    corecore