408 research outputs found

    Adaptive Mesh Refinement for Hyperbolic Systems based on Third-Order Compact WENO Reconstruction

    Get PDF
    In this paper we generalize to non-uniform grids of quad-tree type the Compact WENO reconstruction of Levy, Puppo and Russo (SIAM J. Sci. Comput., 2001), thus obtaining a truly two-dimensional non-oscillatory third order reconstruction with a very compact stencil and that does not involve mesh-dependent coefficients. This latter characteristic is quite valuable for its use in h-adaptive numerical schemes, since in such schemes the coefficients that depend on the disposition and sizes of the neighboring cells (and that are present in many existing WENO-like reconstructions) would need to be recomputed after every mesh adaption. In the second part of the paper we propose a third order h-adaptive scheme with the above-mentioned reconstruction, an explicit third order TVD Runge-Kutta scheme and the entropy production error indicator proposed by Puppo and Semplice (Commun. Comput. Phys., 2011). After devising some heuristics on the choice of the parameters controlling the mesh adaption, we demonstrate with many numerical tests that the scheme can compute numerical solution whose error decays as ⟨N⟩−3\langle N\rangle^{-3}, where ⟨N⟩\langle N\rangle is the average number of cells used during the computation, even in the presence of shock waves, by making a very effective use of h-adaptivity and the proposed third order reconstruction.Comment: many updates to text and figure

    ADER-WENO Finite Volume Schemes with Space-Time Adaptive Mesh Refinement

    Full text link
    We present the first high order one-step ADER-WENO finite volume scheme with Adaptive Mesh Refinement (AMR) in multiple space dimensions. High order spatial accuracy is obtained through a WENO reconstruction, while a high order one-step time discretization is achieved using a local space-time discontinuous Galerkin predictor method. Due to the one-step nature of the underlying scheme, the resulting algorithm is particularly well suited for an AMR strategy on space-time adaptive meshes, i.e.with time-accurate local time stepping. The AMR property has been implemented 'cell-by-cell', with a standard tree-type algorithm, while the scheme has been parallelized via the Message Passing Interface (MPI) paradigm. The new scheme has been tested over a wide range of examples for nonlinear systems of hyperbolic conservation laws, including the classical Euler equations of compressible gas dynamics and the equations of magnetohydrodynamics (MHD). High order in space and time have been confirmed via a numerical convergence study and a detailed analysis of the computational speed-up with respect to highly refined uniform meshes is also presented. We also show test problems where the presented high order AMR scheme behaves clearly better than traditional second order AMR methods. The proposed scheme that combines for the first time high order ADER methods with space--time adaptive grids in two and three space dimensions is likely to become a useful tool in several fields of computational physics, applied mathematics and mechanics.Comment: With updated bibliography informatio

    Third-order Limiting for Hyperbolic Conservation Laws applied to Adaptive Mesh Refinement and Non-Uniform 2D Grids

    Full text link
    In this paper we extend the recently developed third-order limiter function H3L(c)H_{3\text{L}}^{(c)} [J. Sci. Comput., (2016), 68(2), pp.~624--652] to make it applicable for more elaborate test cases in the context of finite volume schemes. This work covers the generalization to non-uniform grids in one and two space dimensions, as well as two-dimensional Cartesian grids with adaptive mesh refinement (AMR). The extension to 2D is obtained by the common approach of dimensional splitting. In order to apply this technique without loss of third-order accuracy, the order-fix developed by Buchm\"uller and Helzel [J. Sci. Comput., (2014), 61(2), pp.~343--368] is incorporated into the scheme. Several numerical examples on different grid configurations show that the limiter function H3L(c)H_{3\text{L}}^{(c)} maintains the optimal third-order accuracy on smooth profiles and avoids oscillations in case of discontinuous solutions

    On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes

    Get PDF
    Third order WENO and CWENO reconstruction are widespread high order reconstruction techniques for numerical schemes for hyperbolic conservation and balance laws. In their definition, there appears a small positive parameter, usually called ϵ\epsilon, that was originally introduced in order to avoid a division by zero on constant states, but whose value was later shown to affect the convergence properties of the schemes. Recently, two detailed studies of the role of this parameter, in the case of uniform meshes, were published. In this paper we extend their results to the case of finite volume schemes on non-uniform meshes, which is very important for h-adaptive schemes, showing the benefits of choosing ϵ\epsilon as a function of the local mesh size hjh_j. In particular we show that choosing ϵ=hj2\epsilon=h_j^2 or ϵ=hj\epsilon=h_j is beneficial for the error and convergence order, studying on several non-uniform grids the effect of this choice on the reconstruction error, on fully discrete schemes for the linear transport equation, on the stability of the numerical schemes. Finally we compare the different choices for ϵ\epsilon in the case of a well-balanced scheme for the Saint-Venant system for shallow water flows and in the case of an h-adaptive scheme for nonlinear systems of conservation laws and show numerical tests for a two-dimensional generalisation of the CWENO reconstruction on locally adapted meshes

    High Order Cell-Centered Lagrangian-Type Finite Volume Schemes with Time-Accurate Local Time Stepping on Unstructured Triangular Meshes

    Get PDF
    We present a novel cell-centered direct Arbitrary-Lagrangian-Eulerian (ALE) finite volume scheme on unstructured triangular meshes that is high order accurate in space and time and that also allows for time-accurate local time stepping (LTS). The new scheme uses the following basic ingredients: a high order WENO reconstruction in space on unstructured meshes, an element-local high-order accurate space-time Galerkin predictor that performs the time evolution of the reconstructed polynomials within each element, the computation of numerical ALE fluxes at the moving element interfaces through approximate Riemann solvers, and a one-step finite volume scheme for the time update which is directly based on the integral form of the conservation equations in space-time. The inclusion of the LTS algorithm requires a number of crucial extensions, such as a proper scheduling criterion for the time update of each element and for each node; a virtual projection of the elements contained in the reconstruction stencils of the element that has to perform the WENO reconstruction; and the proper computation of the fluxes through the space-time boundary surfaces that will inevitably contain hanging nodes in time due to the LTS algorithm. We have validated our new unstructured Lagrangian LTS approach over a wide sample of test cases solving the Euler equations of compressible gasdynamics in two space dimensions, including shock tube problems, cylindrical explosion problems, as well as specific tests typically adopted in Lagrangian calculations, such as the Kidder and the Saltzman problem. When compared to the traditional global time stepping (GTS) method, the newly proposed LTS algorithm allows to reduce the number of element updates in a given simulation by a factor that may depend on the complexity of the dynamics, but which can be as large as 4.7.Comment: 31 pages, 13 figure
    • …
    corecore