1,231 research outputs found

    Autonomic management of virtualized resources in cloud computing

    Get PDF
    The last five years have witnessed a rapid growth of cloud computing in business, governmental and educational IT deployment. The success of cloud services depends critically on the effective management of virtualized resources. A key requirement of cloud management is the ability to dynamically match resource allocations to actual demands, To this end, we aim to design and implement a cloud resource management mechanism that manages underlying complexity, automates resource provisioning and controls client-perceived quality of service (QoS) while still achieving resource efficiency. The design of an automatic resource management centers on two questions: when to adjust resource allocations and how much to adjust. In a cloud, applications have different definitions on capacity and cloud dynamics makes it difficult to determine a static resource to performance relationship. In this dissertation, we have proposed a generic metric that measures application capacity, designed model-independent and adaptive approaches to manage resources and built a cloud management system scalable to a cluster of machines. To understand web system capacity, we propose to use a metric of productivity index (PI), which is defined as the ratio of yield to cost, to measure the system processing capability online. PI is a generic concept that can be applied to different levels to monitor system progress in order to identify if more capacity is needed. We applied the concept of PI to the problem of overload prevention in multi-tier websites. The overload predictor built on the PI metric shows more accurate and responsive overload prevention compared to conventional approaches. To address the issue of the lack of accurate server model, we propose a model-independent fuzzy control based approach for CPU allocation. For adaptive and stable control performance, we embed the controller with self-tuning output amplification and flexible rule selection. Finally, we build a QoS provisioning framework that supports multi-objective QoS control and service differentiation. Experiments on a virtual cluster with two service classes show the effectiveness of our approach in both performance and power control. To address the problems of complex interplay between resources and process delays in fine-grained multi-resource allocation, we consider capacity management as a decision-making problem and employ reinforcement learning (RL) to optimize the process. The optimization depends on the trial-and-error interactions with the cloud system. In order to improve the initial management performance, we propose a model-based RL algorithm. The neural network based environment model, which is learned from previous management history, generates simulated resource allocations for the RL agent. Experiment results on heterogeneous applications show that our approach makes efficient use of limited interactions and find near optimal resource configurations within 7 steps. Finally, we present a distributed reinforcement learning approach to the cluster-wide cloud resource management. We decompose the cluster-wide resource allocation problem into sub-problems concerning individual VM resource configurations. The cluster-wide allocation is optimized if individual VMs meet their SLA with a high resource utilization. For scalability, we develop an efficient reinforcement learning approach with continuous state space. For adaptability, we use VM low-level runtime statistics to accommodate workload dynamics. Prototyped in a iBalloon system, the distributed learning approach successfully manages 128 VMs on a 16-node close correlated cluster

    Towards a novel biologically-inspired cloud elasticity framework

    Get PDF
    With the widespread use of the Internet, the popularity of web applications has significantly increased. Such applications are subject to unpredictable workload conditions that vary from time to time. For example, an e-commerce website may face higher workloads than normal during festivals or promotional schemes. Such applications are critical and performance related issues, or service disruption can result in financial losses. Cloud computing with its attractive feature of dynamic resource provisioning (elasticity) is a perfect match to host such applications. The rapid growth in the usage of cloud computing model, as well as the rise in complexity of the web applications poses new challenges regarding the effective monitoring and management of the underlying cloud computational resources. This thesis investigates the state-of-the-art elastic methods including the models and techniques for the dynamic management and provisioning of cloud resources from a service provider perspective. An elastic controller is responsible to determine the optimal number of cloud resources, required at a particular time to achieve the desired performance demands. Researchers and practitioners have proposed many elastic controllers using versatile techniques ranging from simple if-then-else based rules to sophisticated optimisation, control theory and machine learning based methods. However, despite an extensive range of existing elasticity research, the aim of implementing an efficient scaling technique that satisfies the actual demands is still a challenge to achieve. There exist many issues that have not received much attention from a holistic point of view. Some of these issues include: 1) the lack of adaptability and static scaling behaviour whilst considering completely fixed approaches; 2) the burden of additional computational overhead, the inability to cope with the sudden changes in the workload behaviour and the preference of adaptability over reliability at runtime whilst considering the fully dynamic approaches; and 3) the lack of considering uncertainty aspects while designing auto-scaling solutions. This thesis seeks solutions to address these issues altogether using an integrated approach. Moreover, this thesis aims at the provision of qualitative elasticity rules. This thesis proposes a novel biologically-inspired switched feedback control methodology to address the horizontal elasticity problem. The switched methodology utilises multiple controllers simultaneously, whereas the selection of a suitable controller is realised using an intelligent switching mechanism. Each controller itself depicts a different elasticity policy that can be designed using the principles of fixed gain feedback controller approach. The switching mechanism is implemented using a fuzzy system that determines a suitable controller/- policy at runtime based on the current behaviour of the system. Furthermore, to improve the possibility of bumpless transitions and to avoid the oscillatory behaviour, which is a problem commonly associated with switching based control methodologies, this thesis proposes an alternative soft switching approach. This soft switching approach incorporates a biologically-inspired Basal Ganglia based computational model of action selection. In addition, this thesis formulates the problem of designing the membership functions of the switching mechanism as a multi-objective optimisation problem. The key purpose behind this formulation is to obtain the near optimal (or to fine tune) parameter settings for the membership functions of the fuzzy control system in the absence of domain experts’ knowledge. This problem is addressed by using two different techniques including the commonly used Genetic Algorithm and an alternative less known economic approach called the Taguchi method. Lastly, we identify seven different kinds of real workload patterns, each of which reflects a different set of applications. Six real and one synthetic HTTP traces, one for each pattern, are further identified and utilised to evaluate the performance of the proposed methods against the state-of-the-art approaches

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Towards a novel biologically-inspired cloud elasticity framework

    Get PDF
    With the widespread use of the Internet, the popularity of web applications has significantly increased. Such applications are subject to unpredictable workload conditions that vary from time to time. For example, an e-commerce website may face higher workloads than normal during festivals or promotional schemes. Such applications are critical and performance related issues, or service disruption can result in financial losses. Cloud computing with its attractive feature of dynamic resource provisioning (elasticity) is a perfect match to host such applications. The rapid growth in the usage of cloud computing model, as well as the rise in complexity of the web applications poses new challenges regarding the effective monitoring and management of the underlying cloud computational resources. This thesis investigates the state-of-the-art elastic methods including the models and techniques for the dynamic management and provisioning of cloud resources from a service provider perspective. An elastic controller is responsible to determine the optimal number of cloud resources, required at a particular time to achieve the desired performance demands. Researchers and practitioners have proposed many elastic controllers using versatile techniques ranging from simple if-then-else based rules to sophisticated optimisation, control theory and machine learning based methods. However, despite an extensive range of existing elasticity research, the aim of implementing an efficient scaling technique that satisfies the actual demands is still a challenge to achieve. There exist many issues that have not received much attention from a holistic point of view. Some of these issues include: 1) the lack of adaptability and static scaling behaviour whilst considering completely fixed approaches; 2) the burden of additional computational overhead, the inability to cope with the sudden changes in the workload behaviour and the preference of adaptability over reliability at runtime whilst considering the fully dynamic approaches; and 3) the lack of considering uncertainty aspects while designing auto-scaling solutions. This thesis seeks solutions to address these issues altogether using an integrated approach. Moreover, this thesis aims at the provision of qualitative elasticity rules. This thesis proposes a novel biologically-inspired switched feedback control methodology to address the horizontal elasticity problem. The switched methodology utilises multiple controllers simultaneously, whereas the selection of a suitable controller is realised using an intelligent switching mechanism. Each controller itself depicts a different elasticity policy that can be designed using the principles of fixed gain feedback controller approach. The switching mechanism is implemented using a fuzzy system that determines a suitable controller/- policy at runtime based on the current behaviour of the system. Furthermore, to improve the possibility of bumpless transitions and to avoid the oscillatory behaviour, which is a problem commonly associated with switching based control methodologies, this thesis proposes an alternative soft switching approach. This soft switching approach incorporates a biologically-inspired Basal Ganglia based computational model of action selection. In addition, this thesis formulates the problem of designing the membership functions of the switching mechanism as a multi-objective optimisation problem. The key purpose behind this formulation is to obtain the near optimal (or to fine tune) parameter settings for the membership functions of the fuzzy control system in the absence of domain experts’ knowledge. This problem is addressed by using two different techniques including the commonly used Genetic Algorithm and an alternative less known economic approach called the Taguchi method. Lastly, we identify seven different kinds of real workload patterns, each of which reflects a different set of applications. Six real and one synthetic HTTP traces, one for each pattern, are further identified and utilised to evaluate the performance of the proposed methods against the state-of-the-art approaches

    Admission Control for Multiuser Communication Systems

    Get PDF
    During the last few years, broadband wireless communication has experienced very rapid growth in telecommunications industry. Hence, the performance analysis of such systems is one of the most important topics. However, accurate systems’ analysis requires first good modeling of the network traffic. Moreover, broadband wireless communication should achieve certain performance in order to satisfy the customers as well as the operators. Therefore, some call admission control techniques should be integrated with wireless networks in order to deny new users/services if accepting them will lead to degrade the network performance to less than the allowed threshold. This thesis mainly discusses the above two issues which can be summarized as follows. First issue is the traffic modeling of wireless communication. The performance analysis is discussed in terms of the quality of services (QoS) and also the grade of services (GoS). Different scenarios have been studies such as enhancing the GoS of handover users. The second issue is the admission control algorithms. Admission Control is part of radio resource management. The performance of admission control is affected by channel characteristics such as fading and interference. Hence, some wireless channel characteristics are introduced briefly. Seven different channel allocation schemes have been discussed and analyzed. Moreover, different admission control algorithms are analyzed such as power-based and multi-classes fuzzy-logic based. Some simulations analyses are given as well to show the system performance of different algorithms and scenarios.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Performance-oriented Cloud Provisioning: Taxonomy and Survey

    Full text link
    Cloud computing is being viewed as the technology of today and the future. Through this paradigm, the customers gain access to shared computing resources located in remote data centers that are hosted by cloud providers (CP). This technology allows for provisioning of various resources such as virtual machines (VM), physical machines, processors, memory, network, storage and software as per the needs of customers. Application providers (AP), who are customers of the CP, deploy applications on the cloud infrastructure and then these applications are used by the end-users. To meet the fluctuating application workload demands, dynamic provisioning is essential and this article provides a detailed literature survey of dynamic provisioning within cloud systems with focus on application performance. The well-known types of provisioning and the associated problems are clearly and pictorially explained and the provisioning terminology is clarified. A very detailed and general cloud provisioning classification is presented, which views provisioning from different perspectives, aiding in understanding the process inside-out. Cloud dynamic provisioning is explained by considering resources, stakeholders, techniques, technologies, algorithms, problems, goals and more.Comment: 14 pages, 3 figures, 3 table

    Utility-based Allocation of Resources to Virtual Machines in Cloud Computing

    Get PDF
    In recent years, cloud computing has gained a wide spread use as a new computing model that offers elastic resources on demand, in a pay-as-you-go fashion. One important goal of a cloud provider is dynamic allocation of Virtual Machines (VMs) according to workload changes in order to keep application performance to Service Level Agreement (SLA) levels, while reducing resource costs. The problem is to find an adequate trade-off between the two conflicting objectives of application performance and resource costs. In this dissertation, resource allocation solutions for this trade-off are proposed by expressing application performance and resource costs in a utility function. The proposed solutions allocate VM resources at the global data center level and at the local physical machine level by optimizing the utility function. The utility function, given as the difference between performance and costs, represents the profit of the cloud provider and offers the possibility to capture in a flexible and natural way the performance-cost trade-off. For global level resource allocation, a two-tier resource management solution is developed. In the first tier, local node controllers are located that dynamically allocate resource shares to VMs, so to maximize a local node utility function. In the second tier, there is a global controller that makes VM live migration decisions in order to maximize a global utility function. Experimental results show that optimizing the global utility function by changing the number of physical nodes according to workload maintains the performance at acceptable levels while reducing costs. To allocate multiple resources at the local physical machine level, a solution based on feed-back control theory and utility function optimization is proposed. This dynamically allocates shares to multiple resources of VMs such as CPU, memory, disk and network I/O bandwidth. In addressing the complex non-linearities that exist in shared virtualized infrastructures between VM performance and resource allocations, a solution is proposed that allocates VM resources to optimize a utility function based on application performance and power modelling. An Artificial Neural Network (ANN) is used to build an on- line model of the relationships between VM resource allocations and application performance, and another one between VM resource allocations and physical machine power. To cope with large utility optimization times in the case of an increased number of VMs, a distributed resource manager is proposed. It consists of several ANNs, each responsible for modelling and resource allocation of one VM, while exchanging information with other ANNs for coordinating resource allocations. Experiments, in simulated and realistic environments, show that the distributed ANN resource manager achieves better performance-power trade-offs than a centralized version and a distributed non-coordinated resource manager. To deal with the difficulty of building an accurate online application model and long model adaptation time, a solution that offers model-free resource management based on fuzzy control is proposed. It optimizes a utility function based on a hill-climbing search heuristic implemented as fuzzy rules. To cope with long utility optimization time in the case of an increased number of VMs, a multi-agent fuzzy controller is developed where each agent, in parallel with others, optimizes its own local utility function. The fuzzy control approach eliminates the need to build a model beforehand and provides a robust solution even for noisy measurements. Experimental results show that the multi-agent fuzzy controller performs better in terms of utility value than a centralized fuzzy control version and a state-of-the-art adaptive optimal control approach, especially for an increased number of VMs. Finally, to address some of the problems of reactive VM resource allocation approaches, a proactive resource allocation solution is proposed. This approach decides on VM resource allocations based on resource demand prediction, using a machine learning technique called Support Vector Machine (SVM). To deal with interdependencies between VMs of the same multi-tier application, cross- correlation demand prediction of multiple resource usage time series of all VMs of the multi-tier application is applied. As experiments show, this results in improved prediction accuracy and application performance

    QoS-Based Optimization of Runtime Management of Sensing Cloud Applications

    Get PDF
    Die vorliegende Arbeit präsentiert Ansätze und Techniken zur qualitätsbewussten Verbesserung des Laufzeitmanagements von IoT-Anwendungen. IoT-Anwendungen nehmen über die Sensorik von Smart Devices ihre Umgebung wahr, um diese zu analysieren oder mit ihr zu interagieren. Smart Devices sind in der Rechen- und Speicherleistung begrenzt, weshalb viele IoT-Anwendungen über eine IoT Plattform mit elastischen und skalierbaren Cloud Services verbunden sind. Die Last auf dem Cloud Service entsteht durch die verbundenen Smart Devices, die kontinuierlich Nachrichten transferieren. Die Ressourcenkonfiguration des Cloud Services beeinflusst dessen Kapazität. Ein Service Operator, der eine IoT-Anwendung betreibt, ist mit der Herausforderung konfrontiert, die Smart Devices und den Cloud Service so zu konfigurieren, dass eine hohe Datenqualität bei niedrigen Betriebskosten erreicht wird. Um hierbei den Service Operator zur Design Time zu unterstützen, modellieren wir Kostenfunktionen für Datenqualitäten, die durch das Wechselspiel der Smart Device- und Cloud Service-Konfiguration beeinflusst werden. Mit Hilfe dieser Kostenfunktionen kann ein Service Operator nach einer kostenminimalen Konfiguration für bestimmte Szenarien suchen. Existierende Ansätze zur Optimierung von Anwendungen zur Design Time fokussieren sich auf traditionelle Software-Architekturen und bieten daher nicht die notwendigen Konzepte zur Kostenmodellierung von IoT-Anwendungen an. Des Weiteren unterstützen wir den Service Operator durch Lastkontrollverfahren, die auf Kapazitätsengpässe des Cloud Services durch eine kontrollierte Reduktion der Nachrichtenrate reagieren. Während sich das auf die Genauigkeit der Messungen nachteilig auswirken kann, stabilisieren sich zeitliche Verzögerungen und die IoT-Anwendung bleibt auch in starken Überlastszenarien verfügbar. Existierende Laufzeittechniken fokussieren sich auf die automatische Ressourcenprovisionierung von Cloud Services durch Auto-Scaler. Diese ermöglichen zwar, auf Kapazitätsengpässe und Lastschwankungen zu reagieren, doch die erreichte Quality-of-Service (QoS) kann dadurch mit hohen Betriebskosten verbunden sein. Daher ermöglichen wir durch die Lastkontrollverfahren eine weitere Technik, mit der einerseits dynamisch auf Kapazitätsengpässe reagiert werden und andererseits die zur Verfügung stehende Kapazität eines Cloud Services effizient genutzt werden kann. Außerdem präsentieren wir Kopplungstechniken, die Auto-Scaling und Lastkontrollverfahren kombinieren. Bestehende Ansätze zur Rekonfiguration von Smart Devices konzentrieren sich auf Qualitäten wie Genauigkeit oder Energie-Effizienz und sind daher ungeeignet, um auf Kapazitätsengpässe zu reagieren. Zusammenfassend liefert die Dissertation die folgenden Beiträge: 1. Untersuchung von Performance Metriken für Skalierentscheidungen: Wir haben Infrastuktur- und Anwendungsebenen-Metriken daraufhin evaluiert, wie geeignet sie für Skalierentscheidungen von Microservices sind, die variierende Charakteristiken aufweisen. Auf Basis der Ergebnisse kann ein Service Operator eine fundierte Entscheidung darüber treffen, welche Performance Metrik zur Skalierung eines bestimmten Microservices am geeignesten ist. 2. Design von QoS Kostenfunktionen für IoT-Anwendungen: Wir haben ein QoS Kostenmodell aufgestellt, dass das Wirken von Smart Device- und Cloud Service-Konfiguration auf die Qualitäten einer IoT-Anwendung erfasst. Auf Grundlage dieser Kostenmodelle kann die Konfiguration von IoT-Anwendungen zur Design Time optimiert werden. Des Weiteren können mit den Kostenfunktionen Laufzeitverfahren hinsichtlich ihrem Beitrag zur QoS für verschiedene Szenarien evaluiert werden. 3. Entwicklung von Lastkontrollverfahren für IoT-Anwendungen: Die präsentierten Verfahren bieten einen komplementären Mechanismus zu Auto-Scaling an, um bei Kapazitätsengpässen die QoS aufrechtzuerhalten. Hierbei wird die Gesamtlast auf dem Cloud Service durch Anpassungen der Nachrichtenrate der Smart Devices reduziert. Ein Service Operator hat hiermit die Möglichkeit, Kapazitätsengpässen über eine Degradierung der Datenqualität zu begegnen. 4. Kopplung von Lastkontrollverfahren mit Ressourcen-Provisionierung: Wir präsentieren regelbasierte Kopplungsmechanismen, die reaktiv Lastkontrollverfahren oder Auto-Scaler aktivieren und diese damit koppeln. Das ermöglicht, auf Kapazitätsengpässe über eine Kombination von Datenqualitätsreduzierungen und Ressourcekostenerhöhungen zu reagieren. 5. Design eines Frameworks zur Entwicklung selbst-adaptiver Systeme: Das selbst-adaptive Framework bietet ein Anwendungsmodell für IoT-Anwendungen und Konzepte für die Rekonfiguration von Microservices und Smart Devices an. Es kann in verschiedenen Cloud-Umgebungen aufgesetzt werden und beschleunigt die prototypische Entwicklung von Laufzeitverfahren. Wir validierten die Ansätze anhand zweier Case Study Systeme unterschiedlicher Komplexität. Das erste Case Study System besteht aus einem Cloud Service, welcher über eine IoT Plattform Nachrichten von virtuellen Smart Devices verarbeitet. Mit diesem System haben wir für unterschiedliche Anwendungsszenarien die Charakteristiken der vorgestellten Lastkontrollverfahren analysiert, um diese gegen Auto-Scaling und einer Kopplung der Ansätze zu vergleichen. Hierbei stellte sich heraus, dass die Lastkontrollverfahren ähnlich effizient wie Auto-Scaler Überlastszenarien addressieren können und sich die QoS in einem vergleichbaren Bereich bewegt. Im Schnitt erreichten die Lastkontrollverfahren in den untersuchten Szenarien etwa 50 % geringere QoS Gesamtkosten. Es zeigte sich auch, dass sowohl Auto-Scaling als auch die Lastkontrollverfahren in bestimmten Anwendungsszenarien deutliche Nachteile haben, so z. B. wenn die Datengenauigkeit oder Ressourcenkosten im Vordergrund stehen. Es hat sich gezeigt, dass eine Kopplung hierbei immer vorteilhaft ist, um die QoS beizubehalten. Im zweiten Case Study System haben wir eine intelligente Heizungslösung der Robert Bosch GmbH implementiert, um die Ansätze an einem komplexeren System zu validieren. Auch hier zeigte sich, dass eine Kombination von Lastkontrolle und Auto-Scaling am vorteilhaftesten ist und zu einer hohen Datenqualität bei geringen Ressourcenkosten beiträgt. Die Ergebnisse zeigen, dass die vorgestellten Lastkontrollverfahren geeignet sind, die QoS von IoT Anwendungen zu verbessern. Es bietet einem Service Operator damit ein weiteres Werkzeug für das Laufzeitmanagement von IoT Anwendungen, dass einen zum Auto-Scaling komplementären Mechanismus verwendet. Das hier vorgestellte Framework zur Entwicklung selbst-adaptiver IoT Systeme haben wir zur empirischen Beantwortung der Forschungsfragen instanziiert und damit dessen Eignung demonstriert. Wir zeigen außerdem eine exemplarische Verwendung der vorgestellten Kostenfunktionen für verschiedene Anwendungsszenarien und binden diese im Zuge der Validierung in einem Optimierungs-Framework ein
    • …
    corecore