66 research outputs found

    Informational Substitutes

    Full text link
    We propose definitions of substitutes and complements for pieces of information ("signals") in the context of a decision or optimization problem, with game-theoretic and algorithmic applications. In a game-theoretic context, substitutes capture diminishing marginal value of information to a rational decision maker. We use the definitions to address the question of how and when information is aggregated in prediction markets. Substitutes characterize "best-possible" equilibria with immediate information aggregation, while complements characterize "worst-possible", delayed aggregation. Game-theoretic applications also include settings such as crowdsourcing contests and Q\&A forums. In an algorithmic context, where substitutes capture diminishing marginal improvement of information to an optimization problem, substitutes imply efficient approximation algorithms for a very general class of (adaptive) information acquisition problems. In tandem with these broad applications, we examine the structure and design of informational substitutes and complements. They have equivalent, intuitive definitions from disparate perspectives: submodularity, geometry, and information theory. We also consider the design of scoring rules or optimization problems so as to encourage substitutability or complementarity, with positive and negative results. Taken as a whole, the results give some evidence that, in parallel with substitutable items, informational substitutes play a natural conceptual and formal role in game theory and algorithms.Comment: Full version of FOCS 2016 paper. Single-column, 61 pages (48 main text, 13 references and appendix

    Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint

    Get PDF
    Constrained submodular maximization problems encompass a wide variety of applications, including personalized recommendation, team formation, and revenue maximization via viral marketing. The massive instances occurring in modern-day applications can render existing algorithms prohibitively slow. Moreover, frequently those instances are also inherently stochastic. Focusing on these challenges, we revisit the classic problem of maximizing a (possibly non-monotone) submodular function subject to a knapsack constraint. We present a simple randomized greedy algorithm that achieves a 5.83-approximation and runs in O(n log n) time, i.e., at least a factor n faster than other state-of-the-art algorithms. The versatility of our approach allows us to further transfer it to a stochastic version of the problem. There, we obtain a (9 + ε)-approximation to the best adaptive policy, which is the first constant approximation for non-monotone objectives. Experimental evaluation of our algorithms showcases their improved performance on real and synthetic data

    Fast Adaptive Non-Monotone Submodular Maximization Subject to a Knapsack Constraint

    Get PDF
    Constrained submodular maximization problems encompass a wide variety of applications, including personalized recommendation, team formation, and revenue maximization via viral marketing. The massive instances occurring in modern-day applications can render existing algorithms prohibitively slow. Moreover, frequently those instances are also inherently stochastic. Focusing on these challenges, we revisit the classic problem of maximizing a (possibly non-monotone) submodular function subject to a knapsack constraint. We present a simple randomized greedy algorithm that achieves a 5.83-approximation and runs in O(n log n) time, i.e., at least a factor n faster than other state-of-the-art algorithms. The versatility of our approach allows us to further transfer it to a stochastic version of the problem. There, we obtain a (9 + ε)-approximation to the best adaptive policy, which is the first constant approximation for non-monotone objectives. Experimental evaluation of our algorithms showcases their improved performance on real and synthetic data
    • …
    corecore