29 research outputs found

    Power Optimisation and Relay Selection in Cooperative Wireless Communication Networks

    Get PDF
    Cooperative communications have emerged as a significant concept to improve reliability and throughput in wireless systems. In cooperative networks, the idea is to implement a scheme in wireless systems where the nodes can harmonize their resources thereby enhancing the network performance in different aspects such as latency, BER and throughput. As cooperation spans from the basic idea of transmit diversity achieved via MIMO techniques and the relay channel, it aims to reap somewhat multiple benefits of combating fading/burst errors, increasing throughput and reducing energy use. Another major benefit of cooperation in wireless networks is that since the concept only requires neighbouring nodes to act as virtual relay antennas, the concept evades the negative impacts of deployment costs of multiple physical antennas for network operators especially in areas where they are difficult to deploy. In cooperative communications energy efficiency and long network lifetimes are very important design issues, the focus in this work is on ad hoc and sensor network varieties where the nodes integrate sensing, processing and communication such that their cooperation capabilities are subject to power optimisation. As cooperation communications leads to trade-offs in Quality of Services and transmit power, the key design issue is power optimisation to dynamically combat channel fluctuations and achieve a net reduction of transmit power with the goal of saving battery life. Recent researches in cooperative communications focus on power optimisation achieved via power control at the PHY layer, and/or scheduling mechanism at the MAC layer. The approach for this work will be to review the power control strategy at the PHY layer, identify their associated trade-offs, and use this as a basis to propose a power control strategy that offers adaptability to channel conditions, the road to novelty in this work is a channel adaptable power control algorithm that jointly optimise power allocation, modulation strategy and relay selection. Thus, a novel relay selection method is developed and implemented to improve the performance of cooperative wireless networks in terms of energy consumption. The relay selection method revolves on selection the node with minimum distance to the source and destination. The design is valid to any wireless network setting especially Ad-hoc and sensor networks where space limitations preclude the implementation of bigger capacity battery. The thesis first investigates the design of relay selection schemes in cooperative networks and the associated protocols. Besides, modulation strategy and error correction code impact on energy consumption are investigated and the optimal solution is proposed and jointly implemented with the relay selection method. The proposed algorithm is extended to cooperative networks in which multiple nodes participate in cooperation in fixed and variable rate system. Thus, multi relay selection algorithm is proposed to improve virtual MIMO performance in terms of energy consumption. Furthermore, motivated by the trend of cell size optimisation in wireless networks, the proposed relay selection method is extended to clustered wireless networks, and jointly implemented with virtual clustering technique. The work will encompass three main stages: First, the cooperative system is designed and two major protocols Decode and Forward (DF) and amplify and forward (AF) are investigated. Second, the proposed algorithm is modelled and tested under different channel conditions with emphasis on its performance using different modulation strategies for different cooperative wireless networks. Finally, the performance of the proposed algorithm is illustrated and verified via computer simulations. Simulation results show that the distance based relay selection algorithm exhibits an improved performance in terms of energy consumption compared to the conventional cooperative schemes under different cooperative communication scenarios

    Impacts of Soil Type and Moisture on the Capacity of Multi-Carrier Modulation in Internet of Underground Things

    Get PDF
    Unique interactions between soil and communication components in wireless underground communications necessitate revisiting fundamental communication concepts from a different perspective. In this paper, capacity profile of wireless underground (UG) channel for multi-carrier transmission techniques is analyzed based on empirical antenna return loss and channel frequency response models in different soil types and moisture values. It is shown that data rates in excess of 124 Mbps are possible for distances up to 12 m. For shorter distances and lower soil moisture conditions, data rates of 362 Mbps can be achieved. It is also shown that due to soil moisture variations, UG channel experiences significant variations in antenna bandwidth and coherence bandwidth, which demands dynamic subcarrier operation. Theoretical analysis based on this empirical data show that by adaption to soil moisture variations, 180% improvement in channel capacity is possible when soil moisture decreases. It is shown that compared to a fixed bandwidth system; soilbased, system and sub-carrier bandwidth adaptation leads to capacity gains of 56%-136%. The analysis is based on indoor and outdoor experiments with more than 1; 500 measurements taken over a period of 10 months. These semi-empirical capacity results provide further evidence on the potential of underground channel as a viable media for high data rate communication and highlight potential improvements in this area

    Impacts of Soil Type and Moisture on the Capacity of Multi-Carrier Modulation in Internet of Underground Things

    Get PDF
    Unique interactions between soil and communication components in wireless underground communications necessitate revisiting fundamental communication concepts from a different perspective. In this paper, capacity profile of wireless underground (UG) channel for multi-carrier transmission techniques is analyzed based on empirical antenna return loss and channel frequency response models in different soil types and moisture values. It is shown that data rates in excess of 124 Mbps are possible for distances up to 12 m. For shorter distances and lower soil moisture conditions, data rates of 362 Mbps can be achieved. It is also shown that due to soil moisture variations, UG channel experiences significant variations in antenna bandwidth and coherence bandwidth, which demands dynamic subcarrier operation. Theoretical analysis based on this empirical data show that by adaption to soil moisture variations, 180% improvement in channel capacity is possible when soil moisture decreases. It is shown that compared to a fixed bandwidth system; soilbased, system and sub-carrier bandwidth adaptation leads to capacity gains of 56%-136%. The analysis is based on indoor and outdoor experiments with more than 1; 500 measurements taken over a period of 10 months. These semi-empirical capacity results provide further evidence on the potential of underground channel as a viable media for high data rate communication and highlight potential improvements in this area

    Underground Wireless Channel Bandwidth and Capacity

    Get PDF
    The UG channel bandwidth and capacity are vital parameters in wireless underground communication system design. In this chapter, a comprehensive analysis of the wireless underground channel capacity is presented. The impact of soil on return loss, bandwidth, and path loss is discussed. The results of underground multi-carrier modulation capacity are also outlined. Moreover, the single user capacity and multi-carrier capacity are also introduced with an in-depth treatment of soil texture, soil moisture, and distance effects on channel capacity. Finally, the chapter is concluded with a discussion of challenges and open research issues

    Modulation Schemes and Connectivity in Wireless Underground Channel

    Get PDF
    In this chapter, a thorough treatment of the modulation schemes for UG Wireless is presented. The effects of soil texture and water content on the capacity of multi-carrier modulation in WUC are discussed. The multi-carrier capacity model results are analyzed. Moreover, the underground MIMO design for underground communications is explained thoroughly. An analysis of medium access in wireless underground is done as well. Furthermore, the soil properties are considered for cross-layer communications of UG wireless. The performance analysis of traditional modulation schemes is also considered. The soil moisture-based modulation approach is also explored in this chapter. The connectivity and diversity reception approaches are discussed for wireless underground communications. The connectivity and interference models are studied for Ad-Hoc and Hybrid Networks. The topology control mechanisms for maintaining network connectivity are explored for maximizing network capacity under the physical models (e.g., the protocol interference model and physical interference model). Moreover, the underground diversity is examined for 3W-Rake receiver and coherent detection along with experimental evaluation and comprehensive analysis of performance of equalization techniques
    corecore