25 research outputs found

    On the data hiding theory and multimedia content security applications

    Get PDF
    This dissertation is a comprehensive study of digital steganography for multimedia content protection. With the increasing development of Internet technology, protection and enforcement of multimedia property rights has become a great concern to multimedia authors and distributors. Watermarking technologies provide a possible solution for this problem. The dissertation first briefly introduces the current watermarking schemes, including their applications in video,, image and audio. Most available embedding schemes are based on direct Spread Sequence (SS) modulation. A small value pseudo random signature sequence is embedded into the host signal and the information is extracted via correlation. The correlation detection problem is discussed at the beginning. It is concluded that the correlator is not optimum in oblivious detection. The Maximum Likelihood detector is derived and some feasible suboptimal detectors are also analyzed. Through the calculation of extraction Bit Error Rate (BER), it is revealed that the SS scheme is not very efficient due to its poor host noise suppression. The watermark domain selection problem is addressed subsequently. Some implications on hiding capacity and reliability are also studied. The last topic in SS modulation scheme is the sequence selection. The relationship between sequence bandwidth and synchronization requirement is detailed in the work. It is demonstrated that the white sequence commonly used in watermarking may not really boost watermark security. To address the host noise suppression problem, the hidden communication is modeled as a general hypothesis testing problem and a set partitioning scheme is proposed. Simulation studies and mathematical analysis confirm that it outperforms the SS schemes in host noise suppression. The proposed scheme demonstrates improvement over the existing embedding schemes. Data hiding in audio signals are explored next. The audio data hiding is believed a more challenging task due to the human sensitivity to audio artifacts and advanced feature of current compression techniques. The human psychoacoustic model and human music understanding are also covered in the work. Then as a typical audio perceptual compression scheme, the popular MP3 compression is visited in some length. Several schemes, amplitude modulation, phase modulation and noise substitution are presented together with some experimental results. As a case study, a music bitstream encryption scheme is proposed. In all these applications, human psychoacoustic model plays a very important role. A more advanced audio analysis model is introduced to reveal implications on music understanding. In the last part, conclusions and future research are presented

    Secure covert communications over streaming media using dynamic steganography

    Get PDF
    Streaming technologies such as VoIP are widely embedded into commercial and industrial applications, so it is imperative to address data security issues before the problems get really serious. This thesis describes a theoretical and experimental investigation of secure covert communications over streaming media using dynamic steganography. A covert VoIP communications system was developed in C++ to enable the implementation of the work being carried out. A new information theoretical model of secure covert communications over streaming media was constructed to depict the security scenarios in streaming media-based steganographic systems with passive attacks. The model involves a stochastic process that models an information source for covert VoIP communications and the theory of hypothesis testing that analyses the adversary‘s detection performance. The potential of hardware-based true random key generation and chaotic interval selection for innovative applications in covert VoIP communications was explored. Using the read time stamp counter of CPU as an entropy source was designed to generate true random numbers as secret keys for streaming media steganography. A novel interval selection algorithm was devised to choose randomly data embedding locations in VoIP streams using random sequences generated from achaotic process. A dynamic key updating and transmission based steganographic algorithm that includes a one-way cryptographical accumulator integrated into dynamic key exchange for covert VoIP communications, was devised to provide secure key exchange for covert communications over streaming media. The discrete logarithm problem in mathematics and steganalysis using t-test revealed the algorithm has the advantage of being the most solid method of key distribution over a public channel. The effectiveness of the new steganographic algorithm for covert communications over streaming media was examined by means of security analysis, steganalysis using non parameter Mann-Whitney-Wilcoxon statistical testing, and performance and robustness measurements. The algorithm achieved the average data embedding rate of 800 bps, comparable to other related algorithms. The results indicated that the algorithm has no or little impact on real-time VoIP communications in terms of speech quality (< 5% change in PESQ with hidden data), signal distortion (6% change in SNR after steganography) and imperceptibility, and it is more secure and effective in addressing the security problems than other related algorithms

    System Steganalysis: Implementation Vulnerabilities and Side-Channel Attacks Against Digital Steganography Systems

    Get PDF
    Steganography is the process of hiding information in plain sight, it is a technology that can be used to hide data and facilitate secret communications. Steganography is commonly seen in the digital domain where the pervasive nature of media content (image, audio, video) provides an ideal avenue for hiding secret information. In recent years, video steganography has shown to be a highly suitable alternative to image and audio steganography due to its potential advantages (capacity, flexibility, popularity). An increased interest towards research in video steganography has led to the development of video stego-systems that are now available to the public. Many of these stego-systems have not yet been subjected to analysis or evaluation, and their capabilities for performing secure, practical, and effective video steganography are unknown. This thesis presents a comprehensive analysis of the state-of-the-art in practical video steganography. Video-based stego-systems are identified and examined using steganalytic techniques (system steganalysis) to determine the security practices of relevant stego-systems. The research in this thesis is conducted through a series of case studies that aim to provide novel insights in the field of steganalysis and its capabilities towards practical video steganography. The results of this work demonstrate the impact of system attacks over the practical state-of-the-art in video steganography. Through this research, it is evident that video-based stego-systems are highly vulnerable and fail to follow many of the well-understood security practices in the field. Consequently, it is possible to confidently detect each stego-system with a high rate of accuracy. As a result of this research, it is clear that current work in practical video steganography demonstrates a failure to address key principles and best practices in the field. Continued efforts to address this will provide safe and secure steganographic technologies

    Advances in Syndrome Coding based on Stochastic and Deterministic Matrices for Steganography

    Get PDF
    Steganographie ist die Kunst der vertraulichen Kommunikation. Anders als in der Kryptographie, wo der Austausch vertraulicher Daten für Dritte offensichtlich ist, werden die vertraulichen Daten in einem steganographischen System in andere, unauffällige Coverdaten (z.B. Bilder) eingebettet und so an den Empfänger übertragen. Ziel eines steganographischen Algorithmus ist es, die Coverdaten nur geringfügig zu ändern, um deren statistische Merkmale zu erhalten, und möglichst in unauffälligen Teilen des Covers einzubetten. Um dieses Ziel zu erreichen, werden verschiedene Ansätze der so genannten minimum-embedding-impact Steganographie basierend auf Syndromkodierung vorgestellt. Es wird dabei zwischen Ansätzen basierend auf stochastischen und auf deterministischen Matrizen unterschieden. Anschließend werden die Algorithmen bewertet, um Vorteile der Anwendung von Syndromkodierung herauszustellen

    Recent Advances in Steganography

    Get PDF
    Steganography is the art and science of communicating which hides the existence of the communication. Steganographic technologies are an important part of the future of Internet security and privacy on open systems such as the Internet. This book's focus is on a relatively new field of study in Steganography and it takes a look at this technology by introducing the readers various concepts of Steganography and Steganalysis. The book has a brief history of steganography and it surveys steganalysis methods considering their modeling techniques. Some new steganography techniques for hiding secret data in images are presented. Furthermore, steganography in speeches is reviewed, and a new approach for hiding data in speeches is introduced

    Digital audio watermarking for broadcast monitoring and content identification

    Get PDF
    Copyright legislation was prompted exactly 300 years ago by a desire to protect authors against exploitation of their work by others. With regard to modern content owners, Digital Rights Management (DRM) issues have become very important since the advent of the Internet. Piracy, or illegal copying, costs content owners billions of dollars every year. DRM is just one tool that can assist content owners in exercising their rights. Two categories of DRM technologies have evolved in digital signal processing recently, namely digital fingerprinting and digital watermarking. One area of Copyright that is consistently overlooked in DRM developments is 'Public Performance'. The research described in this thesis analysed the administration of public performance rights within the music industry in general, with specific focus on the collective rights and broadcasting sectors in Ireland. Limitations in the administration of artists' rights were identified. The impact of these limitations on the careers of developing artists was evaluated. A digital audio watermarking scheme is proposed that would meet the requirements of both the broadcast and collective rights sectors. The goal of the scheme is to embed a standard identifier within an audio signal via modification of its spectral properties in such a way that it would be robust and perceptually transparent. Modification of the audio signal spectrum was attempted in a variety of ways. A method based on a super-resolution frequency identification technique was found to be most effective. The watermarking scheme was evaluated for robustness and found to be extremely effective in recovering embedded watermarks in music signals using a semi-blind decoding process. The final digital audio watermarking algorithm proposed facilitates the development of other applications in the domain of broadcast monitoring for the purposes of equitable royalty distribution along with additional applications and extension to other domains

    Dynamic block encryption with self-authenticating key exchange

    Get PDF
    One of the greatest challenges facing cryptographers is the mechanism used for key exchange. When secret data is transmitted, the chances are that there may be an attacker who will try to intercept and decrypt the message. Having done so, he/she might just gain advantage over the information obtained, or attempt to tamper with the message, and thus, misguiding the recipient. Both cases are equally fatal and may cause great harm as a consequence. In cryptography, there are two commonly used methods of exchanging secret keys between parties. In the first method, symmetric cryptography, the key is sent in advance, over some secure channel, which only the intended recipient can read. The second method of key sharing is by using a public key exchange method, where each party has a private and public key, a public key is shared and a private key is kept locally. In both cases, keys are exchanged between two parties. In this thesis, we propose a method whereby the risk of exchanging keys is minimised. The key is embedded in the encrypted text using a process that we call `chirp coding', and recovered by the recipient using a process that is based on correlation. The `chirp coding parameters' are exchanged between users by employing a USB flash memory retained by each user. If the keys are compromised they are still not usable because an attacker can only have access to part of the key. Alternatively, the software can be configured to operate in a one time parameter mode, in this mode, the parameters are agreed upon in advance. There is no parameter exchange during file transmission, except, of course, the key embedded in ciphertext. The thesis also introduces a method of encryption which utilises dynamic blocks, where the block size is different for each block. Prime numbers are used to drive two random number generators: a Linear Congruential Generator (LCG) which takes in the seed and initialises the system and a Blum-Blum Shum (BBS) generator which is used to generate random streams to encrypt messages, images or video clips for example. In each case, the key created is text dependent and therefore will change as each message is sent. The scheme presented in this research is composed of five basic modules. The first module is the key generation module, where the key to be generated is message dependent. The second module, encryption module, performs data encryption. The third module, key exchange module, embeds the key into the encrypted text. Once this is done, the message is transmitted and the recipient uses the key extraction module to retrieve the key and finally the decryption module is executed to decrypt the message and authenticate it. In addition, the message may be compressed before encryption and decompressed by the recipient after decryption using standard compression tools

    High capacity data embedding schemes for digital media

    Get PDF
    High capacity image data hiding methods and robust high capacity digital audio watermarking algorithms are studied in this thesis. The main results of this work are the development of novel algorithms with state-of-the-art performance, high capacity and transparency for image data hiding and robustness, high capacity and low distortion for audio watermarking.En esta tesis se estudian y proponen diversos métodos de data hiding de imágenes y watermarking de audio de alta capacidad. Los principales resultados de este trabajo consisten en la publicación de varios algoritmos novedosos con rendimiento a la altura de los mejores métodos del estado del arte, alta capacidad y transparencia, en el caso de data hiding de imágenes, y robustez, alta capacidad y baja distorsión para el watermarking de audio.En aquesta tesi s'estudien i es proposen diversos mètodes de data hiding d'imatges i watermarking d'àudio d'alta capacitat. Els resultats principals d'aquest treball consisteixen en la publicació de diversos algorismes nous amb rendiment a l'alçada dels millors mètodes de l'estat de l'art, alta capacitat i transparència, en el cas de data hiding d'imatges, i robustesa, alta capacitat i baixa distorsió per al watermarking d'àudio.Societat de la informació i el coneixemen
    corecore