3 research outputs found

    Artificial neural networks for location estimation and co-cannel interference suppression in cellular networks

    Get PDF
    This thesis reports on the application of artificial neural networks to two important problems encountered in cellular communications, namely, location estimation and co-channel interference suppression. The prediction of a mobile location using propagation path loss (signal strength) is a very difficult and complex task. Several techniques have been proposed recently mostly based on linearized, geometrical and maximum likelihood methods. An alternative approach based on artificial neural networks is proposed in this thesis which offers the advantages of increased flexibility to adapt to different environments and high speed parallel processing. Location estimation provides users of cellular telephones with information about their location. Some of the existing location estimation techniques such as those used in GPS satellite navigation systems require non-standard features, either from the cellular phone or the cellular network. However, it is possible to use the existing GSM technology for location estimation by taking advantage of the signals transmitted between the phone and the network. This thesis proposes the application of neural networks to predict the location coordinates from signal strength data. New multi-layered perceptron and radial basis function based neural networks are employed for the prediction of mobile locations using signal strength measurements in a simulated COST-231 metropolitan environment. In addition, initial preliminary results using limited available real signal-strength measurements in a metropolitan environment are also reported comparing the performance of the neural predictors with a conventional linear technique. The results indicate that the neural predictors can be trained to provide a near perfect mapping using signal strength measurements from two or more base stations. The second application of neural networks addressed in this thesis, is concerned with adaptive equalization, which is known to be an important technique for combating distortion and Inter-Symbol Interference (ISI) in digital communication channels. However, many communication systems are also impaired by what is known as co-channel interference (CCI). Many digital communications systems such as digital cellular radio (DCR) and dual polarized micro-wave radio, for example, employ frequency re-usage and often exhibit performance limitation due to co-channel interference. The degradation in performance due to CCI is more severe than due to ISI. Therefore, simple and effective interference suppression techniques are required to mitigate the interference for a high-quality signal reception. The current work briefly reviews the application of neural network based non-linear adaptive equalizers to the problem of combating co-channel interference, without a priori knowledge of the channel or co-channel orders. A realistic co-channel system is used as a case study to demonstrate the superior equalization capability of the functional-link neural network based Decision Feedback Equalizer (DFE) compared to other conventional linear and neural network based non-linear adaptive equalizers.This project was funded by Solectron (Scotland) Ltd

    Development of Fuzzy System Based Channel Equalisers

    Get PDF
    Channel equalisers are used in digital communication receivers to mitigate the effects of inter symbol interference (ISI) and inter user interference in the form of co-channel interference (CCI) and adjacent channel interference (ACI) in the presence of additive white Gaussian noise (AWGN). An equaliser uses a large part of the computations involved in the receiver. Linear equalisers based on adaptive filtering techniques have long been used for this application. Recently, use of nonlinear signal processing techniques like artificial neural networks (ANN) and radial basis functions (RBF) have shown encouraging results in this application. This thesis presents the development of a nonlinear fuzzy system based equaliser for digital communication receivers. The fuzzy equaliser proposed in this thesis provides a parametric implementation of symbolby-symbol maximum a-posteriori probability (MAP) equaliser based on Bayes’s theory. This MAP equaliser is also called Bayesian equaliser. Its decision function uses an estimate of the noise free received vectors, also called channel states or channel centres. The fuzzy equaliser developed here can be implemented with lower computational complexity than the RBF implementation of the MAP equaliser by using scalar channel states instead of channel states. It also provides schemes for performance tradeoff with complexity and schemes for subset centre selection. Simulation studies presented in this thesis suggests that the fuzzy equaliser by using only 10%-20% of the Bayesian equaliser channel states can provide near optimal performance. Subsequently, this fuzzy equaliser is modified for CCI suppression and is termed fuzzy–CCI equaliser. The fuzzy–CCI equaliser provides a performance comparable to the MAP equaliser designed for channels corrupted with CCI. However the structure of this equaliser is similar to the MAP equaliser that treats CCI as AWGN. A decision feedback form of this equaliser which uses a subset of channel states based on the feedback state is derived. Simulation studies presented in this thesis demonstrate that the fuzzy–CCI equaliser can effectively remove CCI without much increase in computational complexity. This equaliser is also successful in removing interference from more than one CCI sources, where as the MAP equalisers treating CCI as AWGN fail. This fuzzy–CCI equaliser can be treated as a fuzzy equaliser with a preprocessor for CCI suppression, and the preprocessor can be removed under high signal to interference ratio condition

    Co-channel digital signal separation : application and practice

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.Includes bibliographical references (leaves 84-86).This thesis studies the theory and application of co-channel digital signal separation techniques. We set up a test-bed with the GNU Software Defined Radio (SDR) platform where we implement and experiment with single-antenna signal separation algorithms. We mainly investigate linearly-modulated digital signals. To do this, we design a multiple RFID card reader capable of decoding multiple commodity ID cards simultaneously. These passive RFID cards transmit DBPSK waveforms once activated. A signal separation function at the receiver delivers great convenience to the users without increasing the complexity and cost of the cards. Second, we derive the optimal criteria for deciding the start of an RFID frame. We show that the commonly utilized correlation rule is suboptimal and that a correction term needs to be considered to achieve the best detection performance. Several rules for frame synchronization are proposed and analyzed numerically using Monte Carlo simulation. These signal separation techniques present an opportunity to improve the capacity of wireless systems and combat interference. This thesis documents design issues in the physical and application layers, thereby demonstrating the great flexibility and strength of the GNU SDR system.by Dawei Shen.S.M
    corecore