6 research outputs found

    Spectrum sensing and occupancy prediction for cognitive machine-to-machine wireless networks

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfil ment of the requirements for the degree of Doctor of Philosophy (PhD)The rapid growth of the Internet of Things (IoT) introduces an additional challenge to the existing spectrum under-utilisation problem as large scale deployments of thousands devices are expected to require wireless connectivity. Dynamic Spectrum Access (DSA) has been proposed as a means of improving the spectrum utilisation of wireless systems. Based on the Cognitive Radio (CR) paradigm, DSA enables unlicensed spectrum users to sense their spectral environment and adapt their operational parameters to opportunistically access any temporally unoccupied bands without causing interference to the primary spectrum users. In the same context, CR inspired Machine-to-Machine (M2M) communications have recently been proposed as a potential solution to the spectrum utilisation problem, which has been driven by the ever increasing number of interconnected devices. M2M communications introduce new challenges for CR in terms of operational environments and design requirements. With spectrum sensing being the key function for CR, this thesis investigates the performance of spectrum sensing and proposes novel sensing approaches and models to address the sensing problem for cognitive M2M deployments. In this thesis, the behaviour of Energy Detection (ED) spectrum sensing for cognitive M2M nodes is modelled using the two-wave with dffi use power fading model. This channel model can describe a variety of realistic fading conditions including worse than Rayleigh scenarios that are expected to occur within the operational environments of cognitive M2M communication systems. The results suggest that ED based spectrum sensing fails to meet the sensing requirements over worse than Rayleigh conditions and consequently requires the signal-to-noise ratio (SNR) to be increased by up to 137%. However, by employing appropriate diversity and node cooperation techniques, the sensing performance can be improved by up to 11.5dB in terms of the required SNR. These results are particularly useful in analysing the eff ects of severe fading in cognitive M2M systems and thus they can be used to design effi cient CR transceivers and to quantify the trade-o s between detection performance and energy e fficiency. A novel predictive spectrum sensing scheme that exploits historical data of past sensing events to predict channel occupancy is proposed and analysed. This approach allows CR terminals to sense only the channels that are predicted to be unoccupied rather than the whole band of interest. Based on this approach, a spectrum occupancy predictor is developed and experimentally validated. The proposed scheme achieves a prediction accuracy of up to 93% which in turn can lead to up to 84% reduction of the spectrum sensing cost. Furthermore, a novel probabilistic model for describing the channel availability in both the vertical and horizontal polarisations is developed. The proposed model is validated based on a measurement campaign for operational scenarios where CR terminals may change their polarisation during their operation. A Gaussian approximation is used to model the empirical channel availability data with more than 95% confi dence bounds. The proposed model can be used as a means of improving spectrum sensing performance by using statistical knowledge on the primary users occupancy pattern

    Cooperative Spectrum Sensing based on 1-bit Quantization in Cognitive Radio Networks

    Get PDF
    The wireless frequency spectrum is a very valuable resource in the field of communications. Over the years, different bands of the spectrum were licensed to various communications systems and standards. As a result, most of the easily accessible parts of it ended up being theoretically occupied. This made it somewhat difficult to accommodate new wireless technologies, especially with the rise of communications concepts such as the Machine to Machine (M2M) communications and the Internet of Things (IoT). It was necessary to find ways to make better use of wireless spectrum. Cognitive Radio is one concept that came into the light to tackle the problem of spectrum utilization. Various technical reports stated that the spectrum is in fact under-utilized. Many frequency bands are not heavily used over time, and some bands have low activity. Cognitive Radio (CR) Networks aim to exploit and opportunistically share the already licensed spectrum. The objective is to enable various kinds of communications while preserving the licensed parties' right to access the spectrum without interference. Cognitive radio networks have more than one approach to spectrum sharing. In interweave spectrum sharing scheme, cognitive radio devices look for opportunities in the spectrum, in frequency and over time. Therefore, and to find these opportunities, they employ what is known as spectrum sensing. In a spectrum sensing phase, the CR device scans certain parts of the spectrum to find the voids or white spaces in it. After that it exploits these voids to perform its data transmission, thus avoiding any interference with the licensed users. Spectrum sensing has various classifications and approaches. In this thesis, we will present a general review of the main spectrum sensing categories. Furthermore, we will discuss some of the techniques employed in each category including their respective advantages and disadvantages, in addition to some of the research work associated with them. Our focus will be on cooperative spectrum sensing, which is a popular research topic. In cooperative spectrum sensing, multiple CR devices collaborate in the spectrum sensing operation to enhance the performance in terms of detection accuracy. We will investigate the soft-information decision fusion approach in cooperative sensing. In this approach, the CR devices forward their spectrum sensing data to a central node, commonly known as a Fusion Center. At the fusion center, this data is combined to achieve a higher level of accuracy in determining the occupied parts and the empty parts of the spectrum while considering Rayleigh fading channels. Furthermore, we will address the issue of high power consumption due to the sampling process of a wide-band of frequencies at the Nyquist rate. We will apply the 1-bit Quantization technique in our work to tackle this issue. The simulation results show that the detection accuracy of a 1-bit quantized system is equivalent to a non-quantized system with only 2 dB less in Signal-to-Noise Ratio (SNR). Finally, we will shed some light on multiple antenna spectrum sensing, and compare its performance to the cooperative sensing

    Characterisation of MIMO radio propagation channels

    Get PDF
    Due to the incessant requirement for higher performance radio systems, wireless designers have been constantly seeking ways to improve spectrum efficiency, link reliability, service quality, and radio network coverage. During the past few years, space-time technology which employs multiple antennas along with suitable signalling schemes and receiver architectures has been seen as a powerful tool for the implementation of the aforementioned requirements. In particular, the concept of communications via Multiple-Input Multiple-Output (MIMO) links has emerged as one of the major contending ideas for next generation ad-hoc and cellular systems. This is inherently due to the capacities expected when multiple antennas are employed at both ends of the radio link. Such a mobile radio propagation channel constitutes a MIMO system. Multiple antenna technologies and in particular MIMO signalling are envisaged for a number of standards such as the next generation of Wireless Local Area Network (WLAN) technology known as 802.1 ln and the development of the Worldwide Interoperability for Microwave Access (WiMAX) project, such as the 802.16e. For the efficient design, performance evaluation and deployment of such multiple antenna (space-time) systems, it becomes increasingly important to understand the characteristics of the spatial radio channel. This criterion has led to the development of new sounding systems, which can measure both spatial and temporal channel information. In this thesis, a novel semi-sequential wideband MIMO sounder is presented, which is suitable for high-resolution radio channel measurements. The sounder produces a frequency modulated continuous wave (FMCW) or chirp signal with variable bandwidth, centre frequency and waveform repetition rate. It has programmable bandwidth up to 300 MHz and waveform repetition rates up to 300 Hz, and could be used to measure conventional high- resolution delay/Doppler information as well as spatial channel information such as Direction of Arrival (DOA) and Direction of Departure (DOD). Notably the knowledge of the angular information at the link ends could be used to properly design and develop systems such as smart antennas. This thesis examines the theory of multiple antenna propagation channels, the sounding architecture required for the measurement of such spatial channel information and the signal processing which is used to quantify and analyse such measurement data. Over 700 measurement files were collected corresponding to over 175,000 impulse responses with different sounder and antenna array configurations. These included measurements in the Universal Mobile Telecommunication Systems Frequency Division Duplex (UMTS-FDD) uplink band, the 2.25 GHz and 5.8 GHz bands allocated for studio broadcast MIMO video links, and the 2.4 GHz and 5.8 GHz ISM bands allocated for Wireless Local Area Network (WLAN) activity as well as for a wide range of future systems defined in the WiMAX project. The measurements were collected predominantly for indoor and some outdoor multiple antenna channels using sounding signals with 60 MHz, 96 MHz and 240 MHz bandwidth. A wide range of different MIMO antenna array configurations are examined in this thesis with varying space, time and frequency resolutions. Measurements can be generally subdivided into three main categories, namely measurements at different locations in the environment (static), measurements while moving at regular intervals step by step (spatial), and measurements while the receiver (or transmitter) is on the move (dynamic). High-scattering as well as time-varying MIMO channels are examined for different antenna array structures
    corecore