14 research outputs found

    Adaptive Localized Cayley Parametrization for Optimization over Stiefel Manifold

    Full text link
    We present an adaptive parametrization strategy for optimization problems over the Stiefel manifold by using generalized Cayley transforms to utilize powerful Euclidean optimization algorithms efficiently. The generalized Cayley transform can translate an open dense subset of the Stiefel manifold into a vector space, and the open dense subset is determined according to a tunable parameter called a center point. With the generalized Cayley transform, we recently proposed the naive Cayley parametrization, which reformulates the optimization problem over the Stiefel manifold as that over the vector space. Although this reformulation enables us to transplant powerful Euclidean optimization algorithms, their convergences may become slow by a poor choice of center points. To avoid such a slow convergence, in this paper, we propose to estimate adaptively 'good' center points so that the reformulated problem can be solved faster. We also present a unified convergence analysis, regarding the gradient, in cases where fairly standard Euclidean optimization algorithms are employed in the proposed adaptive parametrization strategy. Numerical experiments demonstrate that (i) the proposed strategy succeeds in escaping from the slow convergence observed in the naive Cayley parametrization strategy; (ii) the proposed strategy outperforms the standard strategy which employs a retraction.Comment: 29 pages, 4 figures, 4 table

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282

    Bifurcation analysis of the Topp model

    Get PDF
    In this paper, we study the 3-dimensional Topp model for the dynamicsof diabetes. We show that for suitable parameter values an equilibrium of this modelbifurcates through a Hopf-saddle-node bifurcation. Numerical analysis suggests thatnear this point Shilnikov homoclinic orbits exist. In addition, chaotic attractors arisethrough period doubling cascades of limit cycles.Keywords Dynamics of diabetes 路 Topp model 路 Reduced planar quartic Toppsystem 路 Singular point 路 Limit cycle 路 Hopf-saddle-node bifurcation 路 Perioddoubling bifurcation 路 Shilnikov homoclinic orbit 路 Chao
    corecore