33 research outputs found

    Adaptive Linear Precoded DMT as an Efficient Resource Allocation Scheme for Power-Line Communications

    No full text
    In this paper, we propose to apply adaptive loading principles to linear precoded digital multitone (LP-DMT). This new approach can especially be exploited in the powerline context, since it requires the knowledge of the channel at the transmitter. We first show that maximal waveform capacity is achieved when orthogonal matrices are used to linearly precode the multitone signal. A practical loading algorithm based on tone clustering is then developed to handle the configuration of the system. This algorithm assigns tones, size of precoding matrices, bits and energies in order to maximize the total throughput of the system. The optimization procedure is led under power spectral density (DSP) limitations and finit order modulations constraint. Through simulations over power line channels, it is shown that the new adaptive LP-DMT system takes advantage of the carrier merging effect offered by the precoding function and then outperforms the non-precoded DMT system

    Coded Adaptive Linear Precoded Discrete Multitone Over PLC Channel

    Get PDF
    Discrete multitone modulation (DMT) systems exploit the capabilities of orthogonal subcarriers to cope efficiently with narrowband interference, high frequency attenuations and multipath fadings with the help of simple equalization filters. Adaptive linear precoded discrete multitone (LP-DMT) system is based on classical DMT, combined with a linear precoding component. In this paper, we investigate the bit and energy allocation algorithm of an adaptive LP-DMT system taking into account the channel coding scheme. A coded adaptive LPDMT system is presented in the power line communication (PLC) context with a loading algorithm which accommodates the channel coding gains in bit and energy calculations. The performance of a concatenated channel coding scheme, consisting of an inner Wei's 4-dimensional 16-states trellis code and an outer Reed-Solomon code, in combination with the proposed algorithm is analyzed. Theoretical coding gains are derived and simulation results are presented for a fixed target bit error rate in a multicarrier scenario under power spectral density constraint. Using a multipath model of PLC channel, it is shown that the proposed coded adaptive LP-DMT system performs better than coded DMT and can achieve higher throughput for PLC applications

    An efficient bit-loading algorithm with peak BER constraint for the band-extended PLC

    Get PDF
    ISBN: 978-1-4244-2936-3International audiencePowerline communications (PLC) have become a viable local area network (LAN) solution for in-home networks. In order to achieve high bit rate over powerline, the current technology bandwidth is increased up to 100 MHz within the European project OMEGA. In this paper, an efficient bit-loading algorithm with peak BER constraint is proposed. This algorithm tries to maximize the overall data rate based on linear precoded discrete multitone (LP-DMT), which enables reliable high bit rate transmission. A fast computational algorithm with mean BER constraint is also proposed. Simulations are run over PLC channels and it is shown that peak BER constraint algorithm combined with linear precoding component gives better performance than mean BER constraint algorithm

    Multi-user cross-layer allocation design for LP-OFDM high-rate UWB

    Get PDF
    International audienceIn this paper, we investigate a cross-layer design for the packet scheduling and the resource allocation in UWB systems. This design considers the combination of queuing and channel state information (CSI) which provides QoS support for multimedia applications in UWB. For the physical layer, the use of a linear precoded orthogonal division multiplexing (LPOFDM) waveform is proposed because of its significant performance increase compared to the WiMedia proposal. For the medium access control layer, scheduling is performed in order to differentiate between the different users and to satisfy their quality of service constraints. This cross-layer approach optimizes the system spectral efficiency and solves the problem in the WiMedia solution of cohabitation of more than three users sharing the three sub-bands of the same channel. Simulation results show that the proposed scheme leads to a considerable improvement in resource allocation and can guarantee the required quality of service

    Efficient allocation algorithms for multicarrier spread-spectrum schemes in UWB applications

    Get PDF
    International audienceIn this paper, we propose a multicarrier spread spectrum (MC-SS) waveform for high data rate UWB applications, taking into account the American and the European UWB contexts. This new waveform for UWB is presented as an evolution of the well known Multiband OFDM Alliance (MBOA) solution and does not increase the system complexity significantly. First, we optimize the number of spreading codes to maximize the system range for a fixed QPSK constellation. Secondly, we use variable constellation orders and we propose a low-complexity resource allocation algorithm that maximizes the system throughput. We show that our adaptive MC-SS system transmits information at much higher attenuation levels and with higher throughput compared to the MBOA solution, and can be advantageously exploited for UWB applications

    Adaptive multi-carrier spread-spectrum with dynamic time-frequency codes for UWB applications

    Get PDF
    International audienceIn this paper, we propose a spread spectrum multi-carrier multiple-access (SS-MC-MA) waveform for high data rate UWB applications, taking into consideration the European UWB context. This new UWB scheme respects the parameters of the multiband orthogonal frequency division multiplexing (MB-OFDM) technique which is one of the candidates for wireless personal area networks (WPAN) standardization. We optimize the spreading code length and the number of codes in our proposed scheme in order to maximize the system range for a given target throughput. Furthermore, we dynamically distribute the time-frequency codes that provide frequency hopping between users in order to improve our system range. We show that our adaptive system transmits information at much higher attenuation levels and with larger throughput than the ones of the MB-OFDM proposal. Hence, we conclude that our proposed system can be advantageously exploited for UWB applications

    Receive Combining vs. Multi-Stream Multiplexing in Downlink Systems with Multi-Antenna Users

    Full text link
    In downlink multi-antenna systems with many users, the multiplexing gain is strictly limited by the number of transmit antennas NN and the use of these antennas. Assuming that the total number of receive antennas at the multi-antenna users is much larger than NN, the maximal multiplexing gain can be achieved with many different transmission/reception strategies. For example, the excess number of receive antennas can be utilized to schedule users with effective channels that are near-orthogonal, for multi-stream multiplexing to users with well-conditioned channels, and/or to enable interference-aware receive combining. In this paper, we try to answer the question if the NN data streams should be divided among few users (many streams per user) or many users (few streams per user, enabling receive combining). Analytic results are derived to show how user selection, spatial correlation, heterogeneous user conditions, and imperfect channel acquisition (quantization or estimation errors) affect the performance when sending the maximal number of streams or one stream per scheduled user---the two extremes in data stream allocation. While contradicting observations on this topic have been reported in prior works, we show that selecting many users and allocating one stream per user (i.e., exploiting receive combining) is the best candidate under realistic conditions. This is explained by the provably stronger resilience towards spatial correlation and the larger benefit from multi-user diversity. This fundamental result has positive implications for the design of downlink systems as it reduces the hardware requirements at the user devices and simplifies the throughput optimization.Comment: Published in IEEE Transactions on Signal Processing, 16 pages, 11 figures. The results can be reproduced using the following Matlab code: https://github.com/emilbjornson/one-or-multiple-stream
    corecore